欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2024, Vol. 30 ›› Issue (10): 2414004.  doi: 10.61558/2993-074X.3483

• 论文 • 上一篇    下一篇

基于铂纳米颗粒碰撞电化学用于快速检测乳腺癌MCF-7细胞

秦富星, 李明珂, 周汇龙, 文为, 张修华, 王升富, 伍珍*()   

  1. 湖北省小分子药物精准合成重点实验室,有机功能分子合成与应用教育部重点实验室,湖北大学化学化工学院,湖北 武汉 430062
  • 收稿日期:2024-04-29 接受日期:2024-06-08 出版日期:2024-10-28 发布日期:2024-07-09

Platinum Nanoparticle-Based Collision Electrochemistry for Rapid Detection of Breast Cancer MCF-7 Cells

Fu-Xing Qin, Ming-Ke Li, Hui-Long Zhou, Wei Wen, Xiu-Hua Zhang, Sheng-Fu Wang, Zhen Wu*()   

  1. Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
  • Received:2024-04-29 Accepted:2024-06-08 Published:2024-10-28 Online:2024-07-09
  • Contact: *Zhen Wu, E-mail: wuzhen@hubu.edu.cn

摘要:

癌症转移是全球癌症患者的主要死因,也是治疗癌症的主要挑战之一。循环肿瘤细胞(CTCs)在癌症转移过程中起着核心作用。但是,CTCs在外周血中的含量极少,在实际样本中检测CTCs极具挑战性,故高效富集和早期检测CTCs对于及时诊断疾病至关重要。本工作利用免疫磁分离技术和脂质体信号放大策略构建了一种创新的、精密的用于检测MCF-7细胞(人类乳腺癌细胞)的SNCE生物传感器。以包埋铂纳米颗粒(Pt NPs)的脂质体为信号探针,以自制的金超微电极(Au UME)为工作电极。Pt NPs与UME的每次有效碰撞都会产生可区分的阶梯型电流。根据细胞浓度与碰撞频率(单位时间内阶梯型电流数量)之间的关系,对MCF-7细胞进行了精确定量,实现了对MCF-7细胞的高灵敏度和特异性检测。该SNCE生物传感器线性范围为10 cells·mL-1至105 cells·mL-1,检测限低至5 cells·mL-1。此外,在复杂样本中成功检测到MCF-7细胞,表面SNCE生物传感器在患者样本检测方面具有巨大潜力。

关键词: 循环肿瘤细胞, 单颗粒碰撞电化学, 免疫磁分离, 脂质体, 铂纳米颗粒

Abstract:

Cancer metastasis is the leading cause of death in cancer patients worldwide and one of the major challenges in treating cancer. Circulating tumor cells (CTCs) play a pivotal role in cancer metastasis. However, the content of CTCs in peripheral blood is minimal, so the detection of CTCs in real samples is extremely challenging. Therefore, efficient enrichment and early detection of CTCs are essential to achieve timely diagnosis of diseases. In this work, we constructed an innovative and sensitive single-nanoparticle collision electrochemistry (SNCE) biosensor for the detection of MCF-7 cells (human breast cancer cells) by immunomagnetic separation technique and liposome signal amplification strategy. Liposomes embedded with platinum nanoparticles (Pt NPs) were used as signal probes, and homemade gold ultramicroelectrodes (Au UME) were used as the working electrodes. The effective collision between Pt NPs and UME would produce distinguishable step-type current. MCF-7 cells were accurately quantified according to the relationship between cell concentration and collision frequency (the number of step-type currents generated per unit time), realizing highly sensitive and specific detection of MCF-7 cells. The SNCE biosensor has a linear range of 10 cells·mL-1 to 105 cells·mL-1 with a detection limit as low as 5 cells·mL-1. In addition, the successful detection of MCF-7 cells in complex samples showed that the SNCE biosensors have great potential for patient sample detection.

Key words: Circulating tumor cells, Single-nanoparticle collision electrochemistry, Immunomagnetic separation, Liposome, Platinum nanoparticles