[1] |
Xu W, Zou G Q, Hou H S, Ji X. Single particle electrochemistry of collision[J]. Small, 2019, 15(32): 1804908.
|
[2] |
Chen M, Lu S M, Wang H W, Long Y T. Tracking light-induced fragmentation of single silver nanoparticles by single entity electrochemistry[J]. J. Electrochem., 2022, 28(3): 2108521.
doi: 10.13208/j.electrochem.210852
|
[3] |
Sun L L, Wang W, Chen H Y. Dynamic nanoparticle‐substrate contacts regulate multi‐peak behavior of single silver nanoparticle collisions[J]. ChemElectroChem, 2018, 5(20): 2995-2999.
|
[4] |
Oja S M, Robinson D A, Vitti N J, Edwards M A, Liu Y W, White H S, Zhang B. Observation of multipeak collision behavior during the electro-oxidation of single Ag nanoparticles[J]. J. Am. Chem. Soc., 2017, 139(2): 708-718.
doi: 10.1021/jacs.6b11143
pmid: 27936665
|
[5] |
Sun L L, Wang W, Chen H Y. Correlated optical imaging and electrochemical recording for studying single nanoparticle collisions[J]. J. Electrochem., 2019, 25(3): 386-399.
|
[6] |
Defnet P A, Zhang B. Collision, adhesion, and oxidation of single Ag nanoparticles on a polysulfide-modified microelectrode[J]. J. Am. Chem. Soc., 2021, 143(39): 16154-16162.
doi: 10.1021/jacs.1c07164
pmid: 34549950
|
[7] |
Ding Q D, Sun Z H, Ma W. Probing conformational kinetics of catalase with and without magnetic field by single-entity collision electrochemistry[J]. Sci. Bull., 2023, 68(21): 2564-2573.
doi: 10.1016/j.scib.2023.08.056
pmid: 37718236
|
[8] |
Zhou M, Wang D, Mirkin M V. Electrochemical evaluation of the number of Au atoms in polymeric gold thiolates by single particle collisions[J]. Anal. Chem., 2018, 90(14): 8285-8289.
doi: 10.1021/acs.analchem.7b05333
pmid: 29956536
|
[9] |
Su T, Guo J, He Z K, Zhao J J, Gao Z D, Song Y Y. Single-nanoparticle-level understanding of oxidase-like activity of au nanoparticles on polymer nanobrush-based proton reservoirs[J]. Anal. Chem., 2023, 95(31): 11807-11814.
|
[10] |
Guo J, Pan J, Chang S, Wang X W, Kong N, Yang W R, He J. Monitoring the dynamic process of formation of plasmonic molecular junctions during single nanoparticle collisions[J]. Small, 2018, 14(15): 1704164.
|
[11] |
Hafez M E, Ma H, Ma W, Long Y T. Unveiling the intrinsic catalytic activities of single‐gold‐nanoparticle‐based enzyme mimetics[J]. Angew. Chem. Int. Ed., 2019, 131(19): 6393-6398.
|
[12] |
Bai Y Y, Yang Y J, Xu Y, Yang X Y, Zhang Z L. Current lifetime of single-nanoparticle electrochemical collision for in situ monitoring nanoparticles agglomeration and aggregation[J]. Anal. Chem., 2023, 95(9): 4429-4434.
|
[13] |
Zhang J H, Zhou Y G. Single particle impact electrochemistry: analyses of nanoparticles and biomolecules[J]. J. Electrochem., 2019, 25(3): 374-385.
|
[14] |
Wang H, Yang C, Tang H, Li Y X. Stochastic collision electrochemistry from single G-quadruplex/hemin: electrochemical amplification and microRNA sensing[J]. Anal. Chem., 2021, 93(10): 4593-4600.
doi: 10.1021/acs.analchem.0c05055
pmid: 33660976
|
[15] |
Dunevall J, Fathali H, Najafinobar N, Lovric J, Wigstrom J, Cans C S, Ewing A G. Characterizing the catecholamine content of single mammalian vesicles by collision-adsorption events at an electrode[J]. J. Am. Chem. Soc., 2015, 137(13): 4344-4346.
doi: 10.1021/ja512972f
pmid: 25811247
|
[16] |
Dick J E. Electrochemical detection of single cancer and healthy cell collisions on a microelectrode[J]. Chem. Commun., 2016, 52(72): 10906-10909.
|
[17] |
Qiu X, Dai Q S, Tang H R, Li Y X. Multiplex assays of MicroRNAs by using single particle electrochemical collision in a single run[J]. Anal. Chem., 2023, 95(35): 13376-13384.
|
[18] |
Peng M H, Zhou Y G. Impact electrochemical analysis of soft bio-particles: A mini review[J]. Electrochem. Commun., 2023, 150: 107490.
|
[19] |
Fosdick S E, Anderson M J, Nettleton E G, Crooks R M. Correlated electrochemical and optical tracking of discrete collision events[J]. J. Am. Chem. Soc., 2013, 135(16): 5994-5997.
doi: 10.1021/ja401864k
pmid: 23590646
|
[20] |
Dick J E, Hilterbrand A T, Strawsine L M, Bard A J. Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses[J]. PNAS, 2016, 113(23): 6403-6408.
doi: 10.1073/pnas.1605002113
pmid: 27217569
|
[21] |
Dick J E, Renault C, Bard A J. Observation of single-protein and DNA macromolecule collisions on ultramicroelectrodes[J]. J. Am. Chem. Soc., 2015, 137(26): 8376-8379.
doi: 10.1021/jacs.5b04545
pmid: 26108405
|
[22] |
Deng Z, Elattar R, Maroun F, Renault C. In situ measurement of the size distribution and concentration of insulating particles by electrochemical collision on hemispherical ultramicroelectrodes[J]. Anal. Chem., 2018, 90(21): 12923-12929.
doi: 10.1021/acs.analchem.8b03550
pmid: 30284818
|
[23] |
Ho T L T, Hoang N T T, Lee J, Park J H, Kim B K. Determining mean corpuscular volume and red blood cell count using electrochemical collision events[J]. Biosens. Bioelectron., 2018, 110: 155-159.
doi: S0956-5663(18)30229-X
pmid: 29609162
|
[24] |
Alix‐Panabières C, Pantel K. Characterization of single circulating tumor cells[J]. FEBS letters, 2017, 591(15): 2241-2250.
doi: 10.1002/1873-3468.12662
pmid: 28459503
|
[25] |
Edd J F, Mishra A, Smith K C, Kapur R, Maheswaran S, Haber D A, Toner M. Isolation of circulating tumor cells[J]. Iscience, 2022, 25(8): 104696.
|
[26] |
Shen Z Y, Wu A G, Chen X Y. Current detection technologies for circulating tumor cells[J]. Chem. Soc. Rev., 2017, 46(8): 2038-2056.
doi: 10.1039/c6cs00803h
pmid: 28393954
|
[27] |
Ferreira M M, Ramani V C, Jeffrey S S. Circulating tumor cell technologies[J]. Mol. Oncol., 2016, 10(3): 374-394.
doi: 10.1016/j.molonc.2016.01.007
pmid: 26897752
|
[28] |
Rawal S, Yang Y P, Cote R, Agarwal A. Identification and quantitation of circulating tumor cells[J]. Annu. Rev. Anal. Chem., 2017, 10: 321-343.
|
[29] |
Lawrence R, Watters M, Davies C R, Pantel K, Lu Y J. Circulating tumor cells for early detection of clinically relevant cancer[J]. Nat. Rev. Clin. Oncol., 2023, 20(7): 487-500.
doi: 10.1038/s41571-023-00781-y
pmid: 37268719
|
[30] |
Bankó P, Lee S Y, Nagygyörgy V, Zrínyi M, Chae C H, Cho D H, Telekes A. Technologies for circulating tumor cell separation from whole blood[J]. J. Hematol. Oncol., 2019, 12: 1-20.
|
[31] |
Ju S W, Chen C, Zhang J H, Xu L, Zhang X, Li Z Q, Chen Y X, Zhou J C, Ji F Y, Wang L B. Detection of circulating tumor cells: opportunities and challenges[J]. Biomark. Res., 2022, 10(1): 58.
doi: 10.1186/s40364-022-00403-2
pmid: 35962400
|
[32] |
Moon D H, Lindsay D P, Hong S, Wang A Z. Clinical indications for, and the future of, circulating tumor cells[J]. Adv. Drug. Deliver. Rev., 2018, 125: 143-150.
doi: S0169-409X(18)30054-1
pmid: 29626548
|
[33] |
Tretyakova M S, Menyailo M E, Schegoleva A A, Bokova U A, Larionova I V, Denisov E V. Technologies for viable circulating tumor cell isolation[J]. Int. J. Mol. Sci., 2022, 23(24): 15979.
|
[34] |
Feng Z X, Wu J Y, Lu Y J, Chan Y T, Zhang C, Wang D, Luo D, Huang Y, Feng Y B, Wang N. Circulating tumor cells in the early detection of human cancers[J]. Int. J. Biol. Sci., 2022, 18(8): 3251-3265.
doi: 10.7150/ijbs.71768
pmid: 35637960
|
[35] |
Song Y, Tian T, Shi Y, Liu W L, Zou Y, Khajvand T, Wang S L, Zhu Z, Yang C Y. Enrichment and single-cell analysis of circulating tumor cells[J]. Chem. Sci., 2017, 8(3): 1736-1751.
doi: 10.1039/c6sc04671a
pmid: 28451298
|
[36] |
Akpe V, Kim T H, Brown C L, Cock I E. Circulating tumor cells: a broad perspective[J]. J. R. Soc. Interface, 2020, 17(168): 20200065.
|
[37] |
Bigall N C, Härtling T, Klose M, Klose M, Simon P, Eng L M, Eychmüller A. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: synthesis and distinct optical properties[J]. Nano lett., 2008, 8(12): 4588-4592.
doi: 10.1021/nl802901t
pmid: 19367978
|