电化学(中英文) ›› 2024, Vol. 30 ›› Issue (1): 2303271. doi: 10.13208/j.electrochem.2303271
万紫轩a, Aidar Kuchkaevb, Dmitry Yakhvarovb,c,*(), 康雄武a,*()
收稿日期:
2023-04-07
修回日期:
2023-05-15
接受日期:
2023-06-07
出版日期:
2024-01-28
发布日期:
2023-06-14
Zi-Xuan Wana, Aidar Kuchkaevb, Dmitry Yakhvarovb,c,*(), Xiong-Wu Kanga,*()
Received:
2023-04-07
Revised:
2023-05-15
Accepted:
2023-06-07
Published:
2024-01-28
Online:
2023-06-14
Contact:
*Xiong-Wu Kang, Tel: (86-20)39381206, E-mail address: 摘要:
高效电还原CO2(ECR)为有价值的多碳产物是解决CO2排放问题的有效解决方案。基于卟啉的金属有机框架(MOFs)具有多孔结构和有序的活性位点,有望提高ECR生成多碳产物的选择性。本文制备了由铜-四(4-羧基)卟啉(Cu-TCPP)和Cu2O组成的有机/无机杂化Cu-TCPP@Cu2O电催化剂,其中TCPP在调控形貌方面起着重要作用。ECR过程中原位形成的Cu与Cu-TCPP(Cu-TCPP@Cu)结合可以抑制析氢,富集CO中间体,促进C-C偶联生成C2产物。多孔碳(PC)负载的Cu-TCPP@Cu在PC上被还原为Cu纳米簇,同时对C2产物具有较高的ECR活性和选择性。催化剂在-1.0 V时(相对于可逆氢电极),C2产物法拉第效率为62.3%,部分电流密度为83.4 mA·cm-2,是纯Cu2O和TCPP的7.6倍和13.1倍。本论文研究了催化剂形貌和杂化结构如何提高ECR生C2产物的选择性,为高性能ECR催化剂的设计提供了新思路。
万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271.
Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang. Monodispersed Cu-TCPP/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst toward CO2 Reduction to C2 Products[J]. Journal of Electrochemistry, 2024, 30(1): 2303271.
[1] |
Wang W, Shang L, Chang G L, Yan C Y, Shi R, Zhao Y X, Waterhouse G I N, Yang D J, Zhang T R. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide[J]. Adv. Mater., 2019, 31(19): 1808276.
doi: 10.1002/adma.v31.19 URL |
[2] | Luo T, Liu K, Fu J, Chen S, Li H, Pan H, Liu M. Electric double layer structure in electrocatalytic carbon dioxide reduction[J]. AESR, 2022, 4(3): 2200148. |
[3] |
Mu Z Y, Han N, Xu D, Tian B L, Wang F Y, Wang Y Q, Sun Y M, Liu C, Zhang P K, Wu X J, Li Y G, Ding M N. Critical role of hydrogen sorption kinetics in electrocatalytic CO2 reduction revealed by on-chip in situ transport investigations[J]. Nat. Commun., 2022, 13(1): 6911.
doi: 10.1038/s41467-022-34685-9 |
[4] |
Faunce T A, Lubitz W, Rutherford A W, MacFarlane D, Moore G F, Yang P, Nocera D G, Moore T A, Gregory D H, Fukuzumi S, Yoon K B, Armstrong F A, Wasielewski M R, Styring S. Energy and environment policy case for a global project on artificial photosynthesis[J]. Energy Environ. Sci., 2013, 6(3): 695-698.
doi: 10.1039/c3ee00063j URL |
[5] |
Masel R I, Liu Z, Yang H, Kaczur J J, Carrillo D, Ren S, Salvatore D, Berlinguette C P. An industrial perspective on catalysts for low-temperature CO2 electrolysis[J]. Nat. Nanotechnol., 2021, 16(2): 118-128.
doi: 10.1038/s41565-020-00823-x |
[6] | Zhou Y J, Ni G H, Wu K Z, Chen Q, Wang X Q, Zhu W W, He Z, Li H M, Fu J W, Liu M. Porous Zn Conformal coating on dendritic-like Ag with enhanced selectivity and stability for CO2electroreduction to CO[J]. Adv. Sustain. Syst., 2023, 7(1): 2200374. |
[7] |
De Luna P, Quintero-Bermudez R, Dinh C T, Ross M B, Bushuyev O S, Todorović P, Regier T, Kelley S O, Yang P, Sargent E H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction[J]. Nat. Catal., 2018, 1(2): 103-110.
doi: 10.1038/s41929-017-0018-9 |
[8] |
Pan B B, Fan J, Zhang J, Luo Y Q, Shen C, Wang C Q, Wang Y H, Li Y G. Close to 90% Single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly[J]. ACS Energy Lett., 2022, 7(12): 4224-4231.
doi: 10.1021/acsenergylett.2c02292 URL |
[9] |
Wu Y S, Jiang Z, Lu X, Liang Y Y, Wang H L. Domino electroreduction of CO2 to methanol on a molecular catalyst[J]. Nature, 2019, 575(7784): 639-642.
doi: 10.1038/s41586-019-1760-8 |
[10] |
Wang Q, Liu K, Hu K, Cai C, Li H, Li H, Herran M, Lu Y R, Chan T S, Ma C, Fu J, Zhang S, Liang Y, Cortés E, Liu M. Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO[J]. Nat. Commun., 2022, 13(1): 6082.
doi: 10.1038/s41467-022-33692-0 |
[11] |
Zhao S L, Yang Y C, Tang Z Y. Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts[J]. Angew. Chem. Int. Ed., 2022, 61(11): e202110186.
doi: 10.1002/anie.v61.11 URL |
[12] | Liu P X, Peng L W, He R N, Li L L, Qiao J L. A high-performance continuous-flow MEA reactor for electroreduction CO2 to formate[J]. J. Electrochem., 2022, 28(1): 2104231. |
[13] |
Wang Y R, Yang R X, Chen Y, Gao G K, Wang Y J, Li S L, Lan Y Q. Chloroplast-like porous bismuth-based core-shell structure for high energy efficiency CO2electroreduction[J]. Sci. Bull., 2020, 65(19): 1635-1642.
doi: 10.1016/j.scib.2020.05.010 URL |
[14] |
Tan D X, Cui C N, Shi J B, Luo Z X, Zhang B X, Tan X N, Han B X, Zheng L R, Zhang J, Zhang J L. Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide[J]. Nano Res., 2019, 12(5): 1167-1172.
doi: 10.1007/s12274-019-2372-1 |
[15] |
Hori Y, Wakebe H, Tsukamoto T, Koga O. Electrocatalytic process of Co selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media[J]. Electrochim. Acta, 1994, 39(11): 1833-1839.
doi: 10.1016/0013-4686(94)85172-7 URL |
[16] |
Deng P L, Yang F, Wang Z T, Chen S H, Zhou Y Z, Zaman S, Xia B Y. Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate[J]. Angew. Chem. In. Ed., 2020, 59(27): 10807-10813.
doi: 10.1002/anie.v59.27 URL |
[17] |
Li Q, Fu J J, Zhu W L, Chen Z Z, Shen B, Wu L H, Xi Z, Wang T Y, Lu G, Zhu J J, Sun S H. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure[J]. J. Am. Chem. Soc., 2017, 139(12): 4290-4293.
doi: 10.1021/jacs.7b00261 URL |
[18] |
Gao S, Lin Y, Jiao X C, Sun Y F, Luo Q Q, Zhang W H, Li D Q, Yang J L, Xie Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584): 68-71.
doi: 10.1038/nature16455 |
[19] |
Zhang L, Zhao Z J, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angew. Chem. Int. Ed., 2017, 56(38): 11326-11353.
doi: 10.1002/anie.201612214 pmid: 28168799 |
[20] |
Han S G, Ma D D, Zhu Q L. Atomically structural regulations of carbon-based single-atom catalysts for electrochemical CO2 reduction[J]. Small Methods, 2021, 5(8): 2100102.
doi: 10.1002/smtd.v5.8 URL |
[21] |
Du D Y, Qin J S, Li S L, Su Z M, Lan Y Q. Recent advances in porous polyoxometalate-based metal-organic framework materials[J]. Chem. Soc. Rev., 2014, 43(13): 4615-4632.
doi: 10.1039/C3CS60404G URL |
[22] |
Qin J S, Du D Y, Guan W, Bo X J, Li Y F, Guo L P, Su Z M, Wang Y Y, Lan Y Q, Zhou H C. Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water[J]. J. Am. Chem. Soc., 2015, 137(22): 7169-7177.
doi: 10.1021/jacs.5b02688 URL |
[23] |
Peng C, Zhu X, Xu Z, Yan S, Chang L Y, Wang Z, Zhang J, Chen M, Sham T K, Li Y, Zheng G. Lithium vacancy-tuned [CuO4] sites for selective CO2 electroreduction to C2+ products[J]. Small, 2022, 18(8): 2106433.
doi: 10.1002/smll.v18.8 URL |
[24] | Guo Q, Fu J L, Zhang C Y, Cai C Y, Wang C, Zhou L H, Xu R B, Wang M Y. Preparation of CoO/RGO@Ni foam electrode and its electrocatalytic reduction of CO2[J]. J. Electrochem., 2021, 27(4): 449-455. |
[25] | Zhu C, Chen W, Song Y F, Dong X, Li G H, Wei W, Sun Y H. Effect of reaction conditions on Cu-catalyzed CO2 electroreduction[J]. J. Electrochem., 2020, 26(6): 797-807. |
[26] |
Liang Z B, Qu C, Guo W H, Zou R Q, Xu Q. Pristine metal-organic frameworks and their composites for energy storage and conversion[J]. Adv. Mater., 2018, 30(37): 1702891.
doi: 10.1002/adma.v30.37 URL |
[27] |
Kornienko N, Zhao Y, Kley C S, Zhu C, Kim D, Lin S, Chang C J, Yaghi O M, Yang P. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide[J]. J. Am. Chem. Soc., 2015, 137(44): 14129-14135.
doi: 10.1021/jacs.5b08212 pmid: 26509213 |
[28] |
Savéant J M. Molecular catalysis of electrochemical reactions. Mechanistic aspects[J]. Chem. Rev., 2008, 108(7): 2348-2378.
doi: 10.1021/cr068079z URL |
[29] |
Chi S Y, Chen Q, Zhao S S, Si D H, Wu Q J, Huang Y B, Cao R. Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide[J]. J. Mater. Chem. A, 2022, 10(9): 4653-4659.
doi: 10.1039/D1TA10991J URL |
[30] |
Wannakao S A O, Jumpathong W, Kongpatpanich K A O. Tailoring metalloporphyrin frameworks for an efficient carbon dioxide electroreduction: Selectively stabilizing key intermediates with H-bonding pockets[J]. Inorg. Chem., 2017, 56(12): 7200-7209.
doi: 10.1021/acs.inorgchem.7b00839 pmid: 28569508 |
[31] |
Wang C, Zhu C Y, Zhang M, Geng Y, Li Y G, Su Z M. An intriguing window opened by a metallic two-dimensional lindqvist-cobaltporphyrin organic framework as an electrochemical catalyst for the CO2 reduction reaction[J]. J. Mater. Chem. A, 2020, 8(29): 14807-14814.
doi: 10.1039/D0TA04993J URL |
[32] |
Wang Y R, Huang Q, He C T, Chen Y, Liu J, Shen F C, Lan Y Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2[J]. Nat. Commun., 2018, 9(1): 4466.
doi: 10.1038/s41467-018-06938-z |
[33] |
Hod I, Sampson M D, Deria P, Kubiak C P, Farha O K, Hupp J T. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2[J]. ACS Catal., 2015, 5(11): 6302-6309.
doi: 10.1021/acscatal.5b01767 URL |
[34] |
Titi H M, Patra R, Goldberg I. Exploring supramolecular self-assembly of tetraarylporphyrins by halogen bonding: Crystal engineering with diversely functionalized six-coordinate tin(L)2-porphyrin tectons[J]. Chem.-Eur. J., 2013, 19(44): 14941-14949.
doi: 10.1002/chem.201301857 pmid: 24038463 |
[35] |
Li J W, Zeng H L, Dong X, Ding Y M, Hu S P, Zhang R H, Dai Y Z, Cui P X, Xiao Z, Zhao D H, Zhou L J, Zheng T T, Xiao J P, Zeng J, Xia C. Selective CO2 electrolysis to CO using isolated antimony alloyed copper[J]. Nat. Commun., 2023, 14(1): 340.
doi: 10.1038/s41467-023-35960-z |
[36] |
He T, Chen S M, Ni B, Gong Y, Wu Z, Song L, Gu L, Hu W P, Wang X. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms[J]. Angew. Chem. Int. Ed., 2018, 57(13): 3493-3498.
doi: 10.1002/anie.201800817 pmid: 29380509 |
[37] |
Jin S, Son H J, Farha O K, Wiederrecht G P, Hupp J T. Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting[J]. J. Am. Chem. Soc., 2013, 135(3): 955-958.
doi: 10.1021/ja3097114 pmid: 23293894 |
[38] |
Modak A, Nandi M, Mondal J, Bhaumik A. Porphyrin based porous organic polymers: Novel synthetic strategy and exceptionally high CO2 adsorption capacity[J]. Chem. Commun., 2012, 48(2): 248-250.
doi: 10.1039/C1CC14275E URL |
[39] |
Liu C X, Zhang M L, Li J W, Xue W Q, Zheng T T, Xia C, Zeng J. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling[J]. Angew. Chem. Int. Ed., 2022, 61(3): e202113498.
doi: 10.1002/anie.v61.3 URL |
[40] |
Teng X, Niu Y L, Gong S Q, Liu X, Chen Z F. Selective CO2 reduction to formate on heterostructured Sn/SnO2 nanoparticles promoted by carbon layer networks[J]. J. Electrochem., 2022, 28(2): 2108441.
doi: 10.13208/j.electrochem.210844 |
[41] |
Gong L, Gao Y, Wang Y H, Chen B T, Yu B Q, Liu W B, Han B, Lin C X, Bian Y Z, Qi D D, Jiang J Z. Efficient electrocatalytic carbon dioxide reduction with tetraphenylethylene- and porphyrin-based covalent organic frameworks[J]. Catal. Sci. Technol., 2022, 12(21): 6566-6571.
doi: 10.1039/D2CY01326F URL |
[42] |
Derrick J S, Loipersberger M, Nistanaki S K, Rothweiler A V, Head-Gordon M, Nichols E M, Chang C J. Templating bicarbonate in the second coordination sphere enhances electrochemical CO2 reduction catalyzed by iron porphyrins[J]. J. Am. Chem. Soc., 2022, 144(26): 11656-11663.
doi: 10.1021/jacs.2c02972 URL |
[43] |
Yu P E, Lv X M, Wang Q H, Huang H L, Weng W J, Peng C, Zhang L J, Zheng G F. Promoting electrocatalytic CO2reduction to CH4 by copper porphyrin with donor-acceptor structures[J]. Small, 2022, 19(4): 2205730.
doi: 10.1002/smll.v19.4 URL |
[44] |
Zhang X, Wang Y, Gu M, Wang M Y, Zhang Z S, Pan W Y, Jiang Z, Zheng H Z, Lucero M, Wang H L, Sterbinsky G E, Ma Q, Wang Y G, Feng Z X, Li J, Dai H J, Liang Y Y. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[J]. Nat. Energy, 2020, 5(9): 684-692.
doi: 10.1038/s41560-020-0667-9 |
[45] |
Li B, Wang X Y, Chen L, Zhou Y L, Dang W T, Chang J, Wu C T. Ultrathin Cu-TCPP MOF nanosheets: A new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers[J]. Theranostics, 2018, 8(15): 4086-4096.
doi: 10.7150/thno.25433 pmid: 30128038 |
[46] |
Feng L L, Yu G T, Wu Y Y, Li G D, Li H, Sun Y H, Asefa T, Chen W, Zou X X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. J. Am. Chem. Soc., 2015, 137(44): 14023-14026.
doi: 10.1021/jacs.5b08186 URL |
[47] |
Zhao M T, Wang Y X, Ma Q L, Huang Y, Zhang X, Ping J F, Zhang Z C, Lu Q P, Yu Y F, Xu H, Zhao Y L, Zhang H. Ultrathin 2D metal-organic framework nanosheets[J]. Adv. Mater., 2015, 27(45): 7372-7378.
doi: 10.1002/adma.201503648 |
[48] |
Li J, Song S, Meng J S, Tan L, Liu X M, Zheng Y F, Li Z Y, Yeung K W K, Cui Z D, Liang Y Q, Zhu S L, Zhang X C, Wu S L. 2D MOF periodontitis photodynamic ion therapy[J]. J. Am. Chem. Soc., 2021, 143(37): 15427-15439.
doi: 10.1021/jacs.1c07875 pmid: 34516125 |
[49] |
La D D, Thi H P N, Kim Y S, Rananaware A, Bhosale S V. Facile fabrication of Cu(Ⅱ)-porphyrin MOF thin films from tetrakis(4-carboxyphenyl)porphyrin and Cu(OH)2 nanoneedle array[J]. Appl. Surf. Sci., 2017, 424: 145-150.
doi: 10.1016/j.apsusc.2017.01.110 URL |
[50] |
Zhao S Y, Li S, Zhao Z C, Su Y P, Long Y K, Zheng Z Q, Cui D L, Liu Y, Wang C F, Zhang X J, Zhang Z T. Microwave-assisted hydrothermal assembly of 2d copper-porphyrin metal-organic frameworks for the removal of dyes and antibiotics from water[J]. Environ. Sci. Pollut. Res., 2020, 27(31): 39186-39197.
doi: 10.1007/s11356-020-09865-z |
[51] | Kooti M. Fabrication of nanosized cuprous oxide using Fehling's solution[J]. Transaction F: Nanotechnology, 2010, 17: 73. |
[52] |
Karapinar D, Zitolo A, Huan T N, Zanna S, Taverna D, Galvão Tizei L H, Giaume D, Marcus P, Mougel V, Fontecave M. Carbon-nanotube-supported copper polyphthalocyanine for efficient and selective electrocatalytic CO2 reduction to CO[J]. ChemSusChem, 2020, 13(1): 173-179.
doi: 10.1002/cssc.201902859 pmid: 31622012 |
[53] |
Xu T Y, Wei S T, Zhang X L, Zhang D T, Xu Y C, Cui X Q. Sulfur-doped Cu3p∣S electrocatalyst for hydrogen evolution reaction[J]. Mater. Res. Express, 2019, 6(7): 075501.
doi: 10.1088/2053-1591/ab1293 URL |
[54] |
Zhang J, Mao X N, Pan B B, Xu J, Ding X, Han N, Wang L, Wang Y H, Li Y G. Surface promotion of copper nanoparticles with alumina clusters derived from layered double hydroxide accelerates CO2 reduction to ethylene in membrane electrode assemblies[J]. Nano Res., 2022, 16(4): 4685-4690.
doi: 10.1007/s12274-022-5128-2 |
[55] |
Mette G, Sutter D, Gurdal Y, Schnidrig S, Probst B, Iannuzzi M, Hutter J, Alberto R, Osterwalder J. From porphyrins to pyrphyrins: Adsorption study and metalation of a molecular catalyst on Au(111)[J]. Nanoscale, 2016, 8: 7958-7968.
doi: 10.1039/c5nr08953k pmid: 27006307 |
[56] |
Mei B B, Liu C, Li J, Gu S Q, Du X L, Lu S Y, Song F, Xu W L, Jiang Z. Operando herfd-xanes and surface sensitive Δμ analyses identify the structural evolution of copper(Ⅱ) phthalocyanine for electroreduction of CO2[J]. J. Energy Chem., 2022, 64: 1-7.
doi: 10.1016/j.jechem.2021.04.049 URL |
[57] |
Tang J K, Zhu C Y, Jiang T W, Wei L, Wang H, Yu K, Yang C L, Zhang Y B, Chen C, Li Z T, Zhang D W, Zhang L M. Anion exchange-induced single-molecule dispersion of cobalt porphyrins in a cationic porous organic polymer for enhanced electrochemical CO2 reduction via secondary-coordination sphere interactions[J]. J. Mater. Chem. A, 2020, 8(36): 18677-18686.
doi: 10.1039/D0TA07068H URL |
[58] |
Wang W, Deng C Y, Xie S J, Li Y F, Zhang W Y, Sheng H, Chen C C, Zhao J C. Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(Ⅰ)/copper(Ⅱ)[J]. J. Am. Chem. Soc., 2021, 143(7): 2984-2993.
doi: 10.1021/jacs.1c00206 pmid: 33570952 |
[59] |
Sang J Q, Wei P F, Liu T F, Lv H F, Ni X M, Gao D F, Zhang J W, Li H F, Zang Y P, Yang F, Liu Z, Wang G X, Bao X H. A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products[J]. Angew. Chem. Int. Ed., 2022, 61(5): e202114238.
doi: 10.1002/anie.v61.5 URL |
[60] |
Lin Z C, Jiang Z, Yuan Y B, Li H, Wang H X, Tang Y R, Liu C C, Liang Y Y. Cobalt-N4 macrocyclic complexes for heterogeneous electrocatalysis of the CO2 reduction reaction[J]. Chinese Journal of Catalysis, 2022, 43(1): 104-109.
doi: 10.1016/S1872-2067(21)63880-9 URL |
[61] |
Siltamaki D, Chen S, Rahmati F, Lipkowski J, Cheng A C. Synthesis and electrochemical study of CuAu nanodendrites for CO2 reduction[J]. J. Electrochem., 2021, 27(3): 278-290.
doi: 10.13208/j.electrochem.201253 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||