电化学(中英文) ›› 2021, Vol. 27 ›› Issue (4): 429-438. doi: 10.13208/j.electrochem.200725
代红艳1,*(), 杨慧敏2, 刘宪3, 宋秀丽3, 梁镇海2
收稿日期:
2020-07-24
修回日期:
2020-12-10
出版日期:
2021-08-28
发布日期:
2021-01-29
通讯作者:
代红艳
E-mail:daihongyan12@sina.com
基金资助:
Hong-Yan Dai1,*(), Hui-Min Yang2, Xian Liu3, Xiu-Li Song3, Zhen-Hai Liang2
Received:
2020-07-24
Revised:
2020-12-10
Published:
2021-08-28
Online:
2021-01-29
Contact:
Hong-Yan Dai
E-mail:daihongyan12@sina.com
摘要:
通过水热法合成了一系列MoS2/GQDs复合材料,并制成碳基复合电极。利用电化学测试手段挑选出最佳电极后用于微生物电解池(MEC)阴极的产氢性能研究。实验结果显示: Na2MoO4、半胱氨酸和GQDs的最佳原料配比为375:600:1,制备出的MoS2/GQDs呈现明显的爆米花样纳米片结构,片层厚度在10 nm左右,当碳纸负载量为1.5 mg·cm-2时,MoS2/GQDs碳纸电极的析氢催化能力最佳。在MEC产氢实验中,MoS2/GQDs阴极MEC的产气量、氢气产率、库仑效率、整体氢气回收率、阴极氢气回收率、电能回收率和整体能量回收率分别为51.15±3.15 mL·cycle-1、0.401±0.032 m3H2·m3d-1、91.16±0.054%、66.64±5.39%、72.44±2.60%、217.26±7.42%和77.37±1.50%,均略高于Pt/C阴极MEC或与之媲美。另外,MoS2/GQDs具有良好的长期稳定性,且价格便宜,有利于实际应用。
代红艳, 杨慧敏, 刘宪, 宋秀丽, 梁镇海. MoS2/GQDs催化剂的制备及微生物电解池的产氢性能研究[J]. 电化学(中英文), 2021, 27(4): 429-438.
Hong-Yan Dai, Hui-Min Yang, Xian Liu, Xiu-Li Song, Zhen-Hai Liang. Preparation and Electrochemical Evaluation of MoS2/Graphene Quantum Dots as a Catalyst for Hydrogen Evolution in Microbial Electrolysis Cell[J]. Journal of Electrochemistry, 2021, 27(4): 429-438.
表2
MoS2/GQDs、Pt/C和空白碳纸阴极MEC的产气结果(外加0.7 V电压)
Qgas/(mL·cycle-1) | H2/% | CH4/% | CO2/% | QH2/(m3H2·m3d-1) | |
---|---|---|---|---|---|
MoS2/GQDs | 51.15±3.15 | 62.57±1.21 | 8.18±1.60 | 29.25±0.39 | 0.401±0.032 |
Pt/C | 48.85±4.55 | 60.29±4.01 | 10.70±2.10 | 28.36±4.76 | 0.377±0.052 |
PC | 3.75±0.55 | 43.71±1.41 | 3.97±0.74 | 51.40±1.60 | 0.021±0.004 |
RCE/% | RH2/% | Rcat/% | ηW/% | ηW+S/% | |
MoS2/GQDs | 91.16±0.054 | 66.64±5.39 | 72.44±2.60 | 217.26±7.42 | 77.37±1.50 |
Pt/C | 83.19±11.77 | 62.75±8.67 | 71.40±9.03 | 228.39±18.91 | 83.46±10.16 |
PC | 19.18±2.97 | 3.48±0.61 | 17.41±2.26 | 45.60±4.90 | 3.97±0.55 |
[1] |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
doi: 10.1038/nature11475 URL |
[2] |
Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.
doi: 10.1126/science.1103197 URL |
[3] |
Liu H, Grot S, Logan B E. Electrochemically assisted microbial production of hydrogen from acetate[J]. Environ. Sci. Technol., 2005, 39(11): 4317-4320.
doi: 10.1021/es050244p URL |
[4] |
Kundu A, Sahu J N, Redzwan G, Hashim M A. An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell[J]. Int. J. Hydrog. Energy, 2013, 38(4): 1745-1757.
doi: 10.1016/j.ijhydene.2012.11.031 URL |
[5] |
De Silva Muňoz L, Bergel A, Féron D, Basseguy R. Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode[J]. Int. J. Hydrog. Energy, 2010, 35(16): 8561-8568.
doi: 10.1016/j.ijhydene.2010.05.101 URL |
[6] |
He B H, Chen L, Jing M J, Zhou M J, Hou Z H, Chen X B. 3D MoS2-rGO@Mo nanohybrids for enhanced hydrogen evolution: The importance of the synergy on the Volmer reaction[J]. Electrochim. Acta, 2018, 283: 357-365.
doi: 10.1016/j.electacta.2018.06.168 URL |
[7] |
Wu Z Z, Fei H, Wang D Z. MoS2/Cu2O nanohybrid as a highly efficient catalyst for the photoelectrocatalytic hydrogen generation[J]. Mater. Lett., 2019, 256: 126622.
doi: 10.1016/j.matlet.2019.126622 URL |
[8] |
Xiang Z C, Zhang Z, Xu X J, Zhang Q, Yuan C W. MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution[J]. Carbon, 2016, 98: 84-89.
doi: 10.1016/j.carbon.2015.10.071 URL |
[9] |
Li G Q, Zhang D, Qiao Q, Li G Q, Zhang D, Qiao Q, Yu Y F, Peterson D, Zafar A, Kumar R, Curtarolo S, Hunte F, Shannon S, Zhu Y M, Yang W T, Cao L Y. All the catalytic active sites of MoS2 for hydrogen evolution[J]. J. Am. Chem. Soc., 2016, 138(51): 16632-16638.
doi: 10.1021/jacs.6b05940 URL |
[10] |
Guo J X, Zhu H F, Sun Y F, Tang L, Zhang X. Doping MoS2 with graphene quantum dots: structural and electrical engineering towards enhanced electrochemical hydrogen evolution[J]. Electrochim. Acta, 2016, 211: 603-610.
doi: 10.1016/j.electacta.2016.05.148 URL |
[11] |
Laursen A B, Kegnaes S, Dahl S, Chorkendorff I. Molybdenum sulfides efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution[J]. Energy Environ. Sci., 2012, 5(2): 5577-5591.
doi: 10.1039/c2ee02618j URL |
[12] |
Kong D S, Wang H T, Cha J J, Pasta M, Koski K J, Yao J, Cui Y. Synjournal of MoS2 and MoSe2 films with vertically aligned layers[J]. Nano Lett., 2013, 13(3): 1341-1347.
doi: 10.1021/nl400258t URL |
[13] | Dai H Y(代红艳), Yang H M(杨慧敏), Liu X(刘宪), Jian X(简选), Guo M M(郭敏敏), Cao L L(曹乐乐), Liang Z H(梁镇海). Preparation and electrochemical evaluation of MoS2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J]. Chem. J. Chinese U.(高等学校化学学报), 2018, 39(2): 351-358. |
[14] |
Li F, Li J, Lin X Q, Li X Z, Fang Y Y, Jiao L X, An X C, Fu Y, Jin J, Li R. Designed synjournal of multi-walled carbon nanotubes@Cu@MoS2 hybrid as advanced electrocatalyst for highly efficient hydrogen evolution reaction[J]. J. Power Sources, 2015, 300: 301-308.
doi: 10.1016/j.jpowsour.2015.09.084 URL |
[15] |
Hu W H, Han G Q, Liu Y R, Dong B, Chai Y M, Liu Y Q, Liu C G. Ultrathin MoS2-coated carbon nanospheres as highly efficient electrocatalyts for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2015, 40(20): 6552-6558.
doi: 10.1016/j.ijhydene.2015.03.150 URL |
[16] |
Ge P Y, Scanlon M D, Peljo P, Bian X J, Vubrel H, O'Neill A, Coleman J N, Cantoni M, Hu X L, Kontturi K, Liu B H, Girault H H. Hydrogen evolution across nano-schottky Junctions at carbon supported MoS2 catalysts in biphasic liquid systems[J]. Chem. Comm, 2012, 48(52): 6484-6486.
doi: 10.1039/c2cc31398g URL |
[17] |
Wang P C, Wan L, Lin Y Q, Wang B G. MoS2 supported CoS2 on carbon cloth as a high performance electrode for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2019, 44(31): 16566-16574.
doi: 10.1016/j.ijhydene.2019.04.195 URL |
[18] |
Guo Y X, Zhang X Y, Zhang X P, You T Y. Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution[J]. J. Mater. Chem. A, 2015, 3(31): 15927-15934.
doi: 10.1039/C5TA03766B URL |
[19] |
Karunadasa H I, Montalvo E, Sun Y J, Majda M, Long J R, Chang C J. A molecular MoS2 edge site mimic for catalytic hydrogen generation[J]. Science, 2012, 335(6069): 698-702.
doi: 10.1126/science.1215868 URL |
[20] |
Wu L Q, Xu X B, Zhao Y Q, Zhang K Y, Sun Y, Wang T T, Wang Y Q, Zhong W, Du Y W. Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution[J]. Appl. Surf. Sci., 2017, 425: 470-477.
doi: 10.1016/j.apsusc.2017.06.223 URL |
[21] |
Yan Y, Xia B Y, Ge X M, Liu Z L, Wang J Y, Wang X. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2013, 5(24): 12794-12798.
doi: 10.1021/am404843b URL |
[22] |
Xie J F, Zhang H, Li S, Wang R X, Sun X, Zhou M, Zhou J F, Lou X W, Xie Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Adv. Mater., 2013, 25(40): 5807-5813.
doi: 10.1002/adma.v25.40 URL |
[23] |
Antonios K. Graphene quantum dots: In the crossroad of graphene, quantum dots and carbogenic nanoparticles[J]. Curr. Opin. Colloid Interface Sci., 2015, 20(5-6): 354-361.
doi: 10.1016/j.cocis.2015.11.001 URL |
[24] | Dai H Y(代红艳), Yang H M(杨慧敏), Liu X(刘宪), Song X L(宋秀丽), Liang Z H(梁镇海). Hydrogen production of microbial electrolysis cell using scrap metal net as cathode and the analysis of microbial community structure in anode[J]. J. Electrochem.(电化学), 2019, 25(6): 773-780. |
[25] |
Li Z W, Ye R Q, Feng R, Kang Y M, Zhu X, Tour J M, Fang Z Y. Graphene quantum dots doping of MoS2 monolayers[J]. Adv. Mater., 2015, 27(35): 5235-5240.
doi: 10.1002/adma.201501888 URL |
[26] |
Zhao X, Zhu H, Yang X R. Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution[J]. Nanoscale, 2014, 6(18): 10680-10685.
doi: 10.1039/C4NR01885K URL |
[27] |
Chao D L, Zhu C R, Xia X H, Liu J L, Zhang X, Wang J, Liang P, Lin J Y, Zhang H, Shen Z X, Fan H J. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries[J]. Nano Lett., 2015, 15(1): 565-573.
doi: 10.1021/nl504038s URL |
[28] |
Wang C X, Jin J L, Sun Y Y, Yao J R, Zhao G Z, Liu Y Q. In-situ synjournal and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite[J]. Chem. Eng. J., 2017, 327: 774-782.
doi: 10.1016/j.cej.2017.06.163 URL |
[29] |
Miao J W, Xiao F X, Yang H B, Khoo S Y, Chen J Z, Fan Z X, Hsu Y Y, Chen H M, Zhang H, Liu B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte[J]. Sci. Adv., 2015, 1(7): e1500259.
doi: 10.1126/sciadv.1500259 URL |
[30] |
Guo J X, Li F F, Sun Y F, Zhang X, Tang L. Oxygen-incorporated MoS2 ultrathin nanosheets grown on graphene for efficient electrochemical hydrogen evolution[J]. J. Power Sources, 2015, 291: 195-200.
doi: 10.1016/j.jpowsour.2015.05.034 URL |
[31] |
Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nano-sheets for efficient hydrogen evolution[J]. J. Am. Chem. Soc., 2013, 135(47): 17881-17888.
doi: 10.1021/ja408329q URL |
[32] |
Zhao S Y, Li C X, Wang L P, Liu N Y, Qiao S, Liu B B, Huang H, Liu Y, Kang Z H. Carbon quantum dots modified MoS2 with visible-light-induced high hydrogen evolution catalytic ability[J]. Carbon, 2016, 99: 599-606.
doi: 10.1016/j.carbon.2015.12.088 URL |
[33] |
Lu Y Z, Jiang Y Y, Wei W T, Wu H B, Liu M M, Niu L, Chen W. Novel blue light emitting graphene oxide nanosheets fabricated by surface functionalization[J]. J. Mater. Chem., 2012, 22(7): 2929-2934.
doi: 10.1039/C1JM14174K URL |
[34] |
Liu M M, Chen W. Green synjournal of silver nanoclusters supported on carbon nanodots: enhanced photoluminescence and high catalytic activity for oxygen reduction reaction[J]. Nanoscale, 2013, 5(24): 12558-12564.
doi: 10.1039/c3nr04054b URL |
[35] |
Hu W H, Shang X, Han G Q, Dong B, Liu Y R, Li X, Chai Y M, Liu Y Q, Liu C G. MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution[J]. Carbon, 2016, 100: 236-242.
doi: 10.1016/j.carbon.2016.01.019 URL |
[36] |
Yan Y, Ge X M, Liu Z L, Wang J Y, Lee J M, Wang X. Facile synjournal of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction[J]. Nanoscale, 2013, 5(17): 7768-7771.
doi: 10.1039/c3nr02994h URL |
[37] |
Zheng X L, Xu J B, Yan K Y, Wang H, Wang Z L. Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction[J]. Chem. Mater., 2014, 26(7): 2344-2353.
doi: 10.1021/cm500347r URL |
[38] |
Merki D, Hu X L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts[J]. Energy Environ. Sci., 2011, 4(10): 3878-3888.
doi: 10.1039/c1ee01970h URL |
[39] |
Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2011, 133(19): 7296-7299.
doi: 10.1021/ja201269b URL |
[40] |
Kong D S, Wang H T, Lu Z Y, Cui Y. CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2014, 136(13): 4897-4900.
doi: 10.1021/ja501497n URL |
[41] |
Dai H Y, Yang H M, Liu X, Jian X, Liang Z H. Electrochemical evaluation of nano-Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J]. Fuel, 2016, 174: 251-256.
doi: 10.1016/j.fuel.2016.02.013 URL |
[42] |
Tokash J C, Logan B E. Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells[J]. Int. J. Hydrog. Energy, 2011, 36(16): 9439-9445.
doi: 10.1016/j.ijhydene.2011.05.080 URL |
[43] |
Su M, Wei L L, Qiu Z Z, Wang G, Shen J Q. Hydrogen production in single chamber microbial electrolysis cells with stainless steel fiber felt cathodes[J]. J. Power Sources, 2016, 301: 29-34.
doi: 10.1016/j.jpowsour.2015.09.108 URL |
[44] |
Wang A J, Liu W Z, Cheng S A, Xing D F, Zhou J H, Logan B E. Source of methane and methods to control its formation in single chamber microbial electrolysis cells[J]. Int. J. Hydrog. Energy, 2009, 34(9): 3653-3658.
doi: 10.1016/j.ijhydene.2009.03.005 URL |
[1] | 代红艳, 杨慧敏, 刘 宪, 宋秀丽, 梁镇海. 废旧金属网阴极微生物电解池产氢性能及阳极微生物群落结构分析[J]. 电化学(中英文), 2019, 25(6): 773-780. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||