电化学(中英文) ›› 2020, Vol. 26 ›› Issue (5): 576-595. doi: 10.13208/j.electrochem.200649
吉维肖1, 王功伟2, 王强3, 白力军1, 屈德扬1,*()
收稿日期:
2020-07-06
修回日期:
2020-09-21
出版日期:
2020-10-28
发布日期:
2020-10-28
通讯作者:
屈德扬
E-mail:qud@uwm.edu
JI Wei-xiao1, WANG Gong-wei2, WANG Qiang3, BAI Li-jun1, QU De-yang1,*()
Received:
2020-07-06
Revised:
2020-09-21
Published:
2020-10-28
Online:
2020-10-28
Contact:
QU De-yang
E-mail:qud@uwm.edu
摘要:
查全性教授是中国现代电化学的奠基人之一. 在他的带领下,武汉大学化学系电化学研究室在基础电化学和应用电化学领域取得了卓越的成绩. 查教授及同事们在过去几十年里,栽培学生无数. 后来,一部分学生有幸成为推动世界电化学学科发展的中坚力量. 在这篇综述中,作者将概述查教授及同事们在电化学领域打下的夯实基础,及作者在多孔电极方向的研究进展. 本文的所有作者均于不同时期毕业于武汉大学. 站在巨人的肩膀上,我们实属荣幸!
中图分类号:
吉维肖, 王功伟, 王强, 白力军, 屈德扬. 多孔电极在电化学体系中的应用[J]. 电化学(中英文), 2020, 26(5): 576-595.
JI Wei-xiao, WANG Gong-wei, WANG Qiang, BAI Li-jun, QU De-yang. Porous Electrodes in Electrochemical Energy Storage Systems[J]. Journal of Electrochemistry, 2020, 26(5): 576-595.
Fig. 8
(A) Comparison of the discharge curves for the GDE made with pristine and surface modified carbon. The electrodes were discharged at 1 mA·cm-2; (B) typical example of AC impedance for GDEs and the equivalent circuit used for the fitting (inset); (C) comparison of the double-layer capacitance on the GDEs made with pristine and surface modified carbon at various depths of discharge; (D) the surface reaction between the functional groups on the carbon surface and fluoroaliphatic polyoxyethylene[26].
[1] | 武汉大学电化学研究室. “氢-空气”燃料电池研究 I 空气电极掺液和盐析机理的探讨[J]. Journal of Wuhan University(Natural science) (武汉大学学报(自然科学版)), 1974,1:31-40. |
[2] | 武汉大学电化学研究室. “氢-空气”燃料电池研究 II 以氧化铝为载体的高活性银催化剂[J]. Journal of Wuhan University (Natural science) (武汉大学学报(自然科学版)), 1975,1:28-34. |
[3] | 武汉大学电化学研究室. “氢-空气”燃料电池研究 III 纤维化聚四氟乙烯-乙炔黑防水导电透气膜[J]. Journal of Wuhan University (Natural science) (武汉大学学报(自然科学版)), 1975,2:58-62. |
[4] | 武汉大学电化学研究室. “氢-空气”燃料电池研究 IV几种排水方案的计算比较[J]. Journal of Wuhan University(Natural science) (武汉大学学报(自然科学版)), 1975,4:37-43. |
[5] | 武汉大学电化学研究室. “氢-空气”燃料电池研究 V 集流网设计对极化分布的影响[J]. Journal of Wuhan University (Natural science) (武汉大学学报(自然科学版)), 1976,3:50-57. |
[6] | 武汉大学电化学研究室. “氢-空气”燃料电池研究 VI 200瓦氨-空气燃料电池系统[J]. Journal of Wuhan University (Natural science) (武汉大学学报(自然科学版)), 1976,4:15-18. |
[7] | Tien C W(田昭武). 多孔电极极化理论 I 传质特征电流及其应用[J]. Journal of Xiamen University (Natural science) (厦门大学学报(自然科学版)), 1978,3:48-57. |
[8] | Tien C W(田昭武). 孔电极极化理论 II 有欧姆极化的电极稳态的解和导电特征电流[J]. Journal of Xiamen University (Natural science) (厦门大学学报(自然科学版)), 1978,3:58-71. |
[9] | Tien C W(田昭武). 多孔电极极化理论 I 多孔电极内部的传输特征电流[J]. Science in China (中国科学), 1981,11(4):442-448. |
[10] | Tien C W(田昭武). 多孔电极极化理论 I 气体扩散多孔电极的不平整液膜模型[J]. Science in China (中国科学), 1981,11(5):581-587. |
[11] | Wang Y F, Zheng D, Yang X Q, et al. High rate oxygen reduction in non-aqueous electrolyte with the addition of perfluorinated additives[J]. Energy & Environmental Science, 2011,4(9):3697-3702. |
[12] | Huang J, Li Z, Zhang J B. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer[J]. Frontiers in Energy, 2017,11(3):334-364. |
[13] | Will F G. Electrochemical oxidation of hydrogen on partially immersed platinum electrodes: II. Theoretical treatment[J]. Journal of The Electrochemical Society, 1963,110(2):152-160. |
[14] | Cha C S(査全性). 电极过程动力学导论(第三版)[M]. China Science Publishing, 2002. 307. |
[15] | Butt H J, Graf K, Kappl M. Physics and chemistry of interfaces[M]. John Wiley & Sons: Wiley-VCH, 2013. |
[16] | Bidault F, Brett D J L, Middleton P H, et al. Review of gas diffusion cathodes for alkaline fuel cells[J]. Journal of Power Sources, 2009,187(1):39-48. |
[17] |
Cifrain M, Kordesch K V. Advances, aging mechanism and lifetime in AFCs with circulating electrolytes[J]. Journal of Power Sources, 2004,127(1/2):234-242.
doi: 10.1016/j.jpowsour.2003.09.019 URL |
[18] | Lundblad A, Björnbom P. Wetting-in studies on alkaline-fuel-cell cathodes using a potentiostatic-galvanostatic experimental design[J]. Journal of Electrochemical Society, 1994,141(6):1503-1508. |
[19] | Lu C T(陆君涛), Cha C S(査全性), Yen H C(严河清), et al. The mechanism of weeping and salt-precipitation of air electrodes[J]. Acta Chemica Sinica (化学学报), 1978,36(4):249-260. |
[20] | Kampe D J, Sarangapani S. The electrochemistry of carbon[M] // S. Sarangapani, J. R. Akridge, B. Schumm, Editors, PV 84-85, 179-191, The Electrochemical Society Proceedings Series, Pennington, NJ: 1984. |
[21] |
Sandhu S S, Fellner J P, Brutchen G W. Diffusion-limited model for a lithium/air battery with an organic electrolyte[J]. Journal of Power Sources, 2007,164(1):365-371.
doi: 10.1016/j.jpowsour.2006.09.099 URL |
[22] | Tran C, Yang X Q, Qu D Y. Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity[J]. Journal of Power Sources, 2010, 195(7): 2057-2063. |
[23] | Vierling P. Blood substitutes. Preparation, physiology and medical applications[J]. Advanced Materials, 1988,1(5):172-173. |
[24] | Cha C S, Li C M, Yang H X, et al. Powder microelectrodes[J]. Journal of Electroanalytical Chemistry, 1994,368(1/2):47-54. |
[25] | Fleischmann M. Ultramicroelectrodes[M]. Datatech systems, 1987. |
[26] | Tran C, Yang X Q, Qu D Y. Increased discharge capacity of a Li-air activated carbon cathode produced by preventing carbon surface passivation[J]. Carbon, 2011,49(4):1266-1271. |
[27] | Wang Q, Cha C S, Lu J T, et al. Ionic conductivity of pure water in charged porous matrix[J]. ChemPhyChem, 2012,13(2):514-519. |
[28] |
Wang Q, Cha C S, Lu J T, et al. The electrochemistry of “solid/water” interfaces involved in PEM-H2O reactors, Part I. The “Pt/water” interface[J]. Physical Chemistry Chemical Physics, 2009,11(4):679-687.
doi: 10.1039/b810429h URL pmid: 19835090 |
[29] |
Huang J, Zhang J B, Eikerling M. Theory of electrostatic phenomena in water-filled Pt nanopores[J]. Faraday Discussions, 2016,193:427-446.
doi: 10.1039/c6fd00094k URL pmid: 27711814 |
[30] | Sing K S W, Everett D H, Haul R A W, et al. Pure and applied chemistry[M]. 1985,57(4):603-619. |
[31] | Qu D Y, Shi H. Studies of activated carbon used in double-layer capacitors[J]. Journal of Power Sources, 1998,74(1):99-107 |
[32] | de Levie R. On porous electrodes in electrolyte solutions: I. Capacitance effects[J]. Electrochimica Acta, 1963,8(10):751-780. |
[33] | Levie R. On porous electrodes in electrolyte solutions—IV[J]. Electrochimica Acta, 1964,9(9):1231-1245. |
[34] | Robert D L. Electrochemical response of porous and rough electrodes[J]. Advances in Electrochemistry and Electrochemical Engineering, 1967,6:329-397. |
[35] | Qu D Y, Wang G W, Kafle J, et al. Electrochemical impedance and its application in energy storage systems[J]. Small Method, 2018,2(8):1700342. |
[36] | Bai L, Gao L, Conway B E. Problem of in situ real-area determination in evaluation of performance of rough or porous, gas-evolving electrocatalysts. Part 2. —Unfolding of the electrochemically accessible surface of rough or porous electrodes: a case-study with an electrodeposited porous Pt electrode[J]. Journal of the Chemical Society, Faraday Transactions, 1993,89(2):243-249. |
[37] | Bai L, Gao L, Conway B E. Problem of in situ real-area determination in evaluation of performance of rough or porous, gas-evolving electrocatalysts. Part 1. —Basis for distinction between capacitance of the double layer and the pseudocapacitance due to adsorbed H in the H2 evolution reaction at Pt[J]. Journal of the Chemical Society, 1993,89(2):235-242. |
[38] | Qu D Y. Application of a.c. impedance techniques to the study of the proton diffusion process in the porous MnO2 electrode[J]. Electrochimica Acta, 2003,48(12):1675-1684. |
[39] | Qu D Y. The study of the proton diffusion process in the porous MnO2 electrode[J]. Electrochimica Acta, 2004,49(4):657-665. |
[40] | Qu H N, Kafle J, Harris J, et al. Application of ac impedance as diagnostic tool - Low temperature electrolyte for a Li-ion battery[J]. Electrochimica Acta, 2019, 322: UNSP134755. |
[41] | Kafle J, Harris J, Chang J, et al. Development of wide temperature electrolyte for graphite/LiNiMnCoO2 Li-ion cells: High throughput screening[J]. Journal of Power Sources, 2018,392:60-68. |
[1] | 李响, 黄秋安, 李伟恒, 白玉轩, 王佳, 刘杨, 赵玉峰, 王娟, 张久俊. 宏观均相多孔电极电化学阻抗谱基础[J]. 电化学(中英文), 2021, 27(5): 467-497. |
[2] | 朱畅, 陈为, 宋艳芳, 董笑, 李桂花, 魏伟, 孙予罕. 反应条件对铜催化CO2电还原的影响[J]. 电化学(中英文), 2020, 26(6): 797-807. |
[3] | 王晓晓, 周子睿, 单强, 张增明, 黄俊, 刘欲文, 陈胜利. 锂离子电池多孔电极理论的回顾与新思考[J]. 电化学(中英文), 2020, 26(5): 596-606. |
[4] | 郭建伟,王建龙. 电化学阻抗谱在质子交换膜燃料电池动态的先导应用[J]. 电化学(中英文), 2018, 24(6): 687-696. |
[5] | 魏奕民. 高镍三元正极材料动力学性能的单颗粒研究[J]. 电化学(中英文), 2018, 24(1): 81-88. |
[6] | 李扬,黄波*,袁梦,张志秋,刘宗尧,唐旭晨,朱新坚. 中温固体氧化物燃料电池LaNi0.6Fe0.4O3-δ-Gd0.2Ce0.8O2梯度复合阴极制备及交流阻抗性能[J]. 电化学(中英文), 2014, 20(1): 45-50. |
[7] | 任睿轩, 黄波, 朱新坚, 胡一星, 丁小益, 刘宗尧, 刘烨彬. Gd0.2Ce0.8O2包覆LaNi0.6Fe0.4O3-δ阴极制备及性能[J]. 电化学(中英文), 2013, 19(3): 275-280. |
[8] | 吴秉亮. 一些电化学交流阻抗复数平面图旋转的物理意义[J]. 电化学(中英文), 2013, 19(1): 79-82. |
[9] | 刘希龙, 吴春燕, 周方, 刘红生, 华英杰, 王崇太, 刘晓旸. Keggin型缺位硅钨杂多阴离子的电化学性质及电催化还原H2O2[J]. 电化学(中英文), 2012, 18(2): 174-180. |
[10] | 刘文, 王苗, 陈继涛, 张新祥, 周恒辉. 锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的合成及其高温容量衰减研究[J]. 电化学(中英文), 2012, 18(2): 118-124. |
[11] | 刘珩, 黄波, 朱新坚. 中温固体氧化物燃料电池LaNi0.6Fe0.4O3-δ阴极材料的制备及性能表征[J]. 电化学(中英文), 2011, 17(4): 421-426. |
[12] | 汪芸芸, 黄波, 朱新坚, 胡万起, 余晴春, . 固体氧化物燃料电池LSCM-CeO_2/Ni-ScSZ复合阳极制备及性能表征[J]. 电化学(中英文), 2010, 16(1): 108-111. |
[13] | 徐群杰, 李春香, 倪钰宏, 周国定, . 3-氨基-1,2,4-三氮唑和Na_2WO_4复合缓蚀剂对黄铜的缓蚀协同作用[J]. 电化学(中英文), 2009, 15(2): 190-193. |
[14] | 刘莉, 李瑛, 王福会, . 中温NaCl-水蒸气协同作用下铁的腐蚀机理[J]. 电化学(中英文), 2009, 15(2): 179-183. |
[15] | 唐聿明, 张杰, 左禹, . 萘系减水剂混凝土钢筋的电化学腐蚀[J]. 电化学(中英文), 2009, 15(2): 152-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||