[1] Simon P, Gogotsi Y, Materials for electrochemical capacitors. [J]. Nature Materials 7 (2008) 845-854.
[2] Zhang X, Zhang H, Li C, et al., Recent advances in porous graphene materials for supercapacitor applications. [J]. RSC Advances 4 (2014) 45862-45884.
[3] Hu C-C, Important parameters of electrode materials in constructing supercapacitors of the asymmetric type, in: International Conference on Advanced Capacitors, Osaka, Japan, 2013.
[4] Cericola D, Kötz R, Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. [J]. Electrochimica Acta 72 (2012) 1-17.
[5] Matsui K, Takahata R, Hato Y, et al. Lithium Ion Capacitor. Japan, CN1954397A. [P] 2007.04.25
[6] Nansaka K, Taguchi M. Lithium Ion Capacitor. Japan, CN103201803A. [P] 2013.07.10
[7] ZHENG J-P. High energy density electrochemical capacitors. USA, CN 102971889A. [P] 2013.03.13
[8] Cao W J, Zheng J P, Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes. [J]. Journal of Power Sources 213 (2012) 180-185.
[9] Asanuma H, Inoue H, Maekawa Y, et al. Nonaqueous secondary battery having multiple-layered negative electrode. Japan, CN1177417A. [P] 1998.03.25
[10] You C (游从辉), Xu Y (徐延杰), Cao F (曹福彪), et al. Lithium Ion Battery and the Li-rich Anode. China (中国专利), 103490041A. [P] 2014.01.01
[11] Utsunomiya T. Method of manufacturing lithium ion storage device. 日本, CN 102738515A. [P] 2012.10.17
[12] Ando N, Kojima K. Electric Storage Device. Japan, CN101350432A. [P] 2009.01.21
[13] Wu F (吴锋), Su Y (苏岳锋), Chen S (陈实), et al. A method to pre-lithiate for lithium ion supercapacitor. China (中国专利), CN101252043A. [P] 2008.08.27
[14] Park M S, Lim Y G, Kim J H, et al., A novel lithium-doping approach for an advanced lithium ion capacitor. [J]. Advanced Energy Materials 1 (2011) 1002-1006.
[15] Zhang S S, Eliminating pre-lithiation step for making high energy density hybrid Li-ion capacitor. [J]. Journal of Power Sources 343 (2017) 322-328.
[16] Han X, Han P, Yao J, et al., Nitrogen-doped carbonized polyimide microsphere as a novel anode material for high performance lithium ion capacitors. [J]. Electrochimica Acta 196 (2016) 603-610.
[17] Zhang J, Wu H, Wang J, et al., Pre-lithiation design and lithium ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors. [J]. Electrochimica Acta 182 (2015) 156–164.
[18] Shan X-Y, Wang Y, Wang D-W, et al., A smart self-regenerative lithium ion supercapacitor with a real-time safety monitor. [J]. Energy Storage Materials 1 (2015) 146-151.
[19] Sun X, Zhang X, Zhang H, et al., High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes. [J]. Journal of Power Sources 270 (2014) 318-325.
[20] Yuan M, Liu W, Zhu Y, et al., Electrochemical performance of pre-lithiated graphite as negative electrode in lithium-ion capacitors. [J]. Russian Journal of Electrochemistry 50 (2014) 1050-1057.
[21] Sun X (孙现众), Ma Y (马衍伟), Zhang X (张熊), et al. The pre-lithiation method for Li-ion capacitor. China (中国专利), CN105097293A. [P] 2015.11.25
[22] Sun X (孙现众), Ma Y (马衍伟), Zhang X (张熊), et al. The method to prepare Li-ion hybrid capacitor and the Li-ion hybrid capacitor China (中国专利), CN104008893A. [P] 2014.08.27
[23] Ping L N, Zheng J M, Shi Z Q, et al., Electrochemical performance of lithium ion capacitors using Li+-intercalated mesocarbon microbeads as the negative electrode. [J]. Acta Physico-Chimica Sinica 28 (2012) 1733-1738.
[24] Zhang J, Shi Z, Wang C, Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors. [J]. Electrochimica Acta 125 (2014) 22-28.
[25] Ping L N, Zheng J M, Shi Z Q, et al., Electrochemical performance of MCMB/(AC+LiFePO4) lithium-ion capacitors. [J]. Chinese Science Bulletin 58 (2013) 689-695.
[26] Zhang S, Zhang X, Sun X, et al., Effect of the pre-lithiation capacity of mesocarbon microbeads anode on the performances of a flexible package lithium ion capacitors. [J]. Energy Storage Science and Technology 5 (2016) 834-840.
[27] Amatucci G G, Badway F, Du Pasquier A, et al., An asymmetric hybrid nonaqueous energy storage cell. [J]. Journal of the Electrochemical Society 148 (2001) A930-A939.
[28] Yang B (杨斌), Fu G (傅冠生), Chen Z (陈照荣), et al., Preparaton and performance of Li4Ti5O12/AC hybrid capacitor. [J]. Battery monthly (电池) 45 (2015) 149-152.
[29] Dsoke S, Fuchs B, Gucciardi E, et al., The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12. [J]. Journal of Power Sources 282 (2015) 385-393.
[30] Dong S, Wang X, Shen L, et al., Trivalent Ti self-doped Li4Ti5O12: A high performance anode material for lithium-ion capacitors. [J]. Journal of Electroanalytical Chemistry 757 (2015) 1-7.
[31] Leng K, Zhang F, Zhang L, et al., Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. [J]. Nano Research 6 (2013) 581-592.
[32] Xu N, Sun X, Zhang X, et al., A Two-step Method for Preparing Li4Ti5O12-graphene as an Anode Material for Lithium-ion Hybrid Capacitors. [J]. RSC Advances 5 (2015) 94361-94368.
[33] Xu N, Sun X, Zhao F, et al., The Role of Pre-Lithiation in Activated Carbon/Li4Ti5O12 Asymmetric Capacitors. [J]. Electrochimica Acta 236 (2017) 443-450.
[34] Sivakkumar S R, Pandolfo A G, Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode. [J]. Electrochimica Acta 65 (2012) 280-287.
[35] Cao W J, Zheng J P, The effect of cathode and anode potentials on the cycling performance of Li-ion capacitors. [J]. Journal of the Electrochemical Society 160 (2013) A1572-A1576.
[36] Sun X, Zhang X, Liu W, et al., Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor. [J]. Electrochimica Acta 235 (2017) 158-166.
[37] Li C, Zhang X, Wang K, et al., Scalable Self-Propagating High-Temperature Synthesis of Graphene for Supercapacitors with Superior Power Density and Cyclic Stability. [J]. Advanced Materials 29 (2017) 1604690.
[38] Graphene-based Li-ion capacitor developed by QIBEBT, CAS. [J]. Zhejiang chemical industry (浙江化工) 47 (2016) 54-54.
[39] An Z (安仲勋), Yan L (颜亮亮), Xia H (夏恒恒), et al., Reaearch progress and pilot application of lithium-ion capacitor. [J]. Materials chian (中国材料进展) 35 (2016) 528-536.
[40] Sun X, Zhang X, Wang K, et al., Temperature effect on electrochemical performances of Li-ion hybrid capacitors. [J]. Journal of Solid State Electrochemistry 19 (2015) 2501-2506.
[41] Wang B, Wang Q M, Xu B H, et al., The synergy effect on Li storage of LiFePO4 with activated carbon modifications. [J]. RSC Advances 3 (2013) 20024-20033.
[42] Hu X B, Deng Z H, Suo J S, et al., A high rate, high capacity and long life (LiMn2O4 + AC)/Li4Ti5O12 hybrid battery-supercapacitor. [J]. Journal of Power Sources 187 (2009) 635-639.
[43] Chen S L, Hu H C, Wang C Q, et al., (LiFePO4-AC)/Li4Ti5O12 hybrid supercapacitor: The effect of LiFePO4 content on its performance. [J]. Journal of Renewable and Sustainable Energy 4 (2012) 033114.
[44] Ruan D, Huang Y, Li L, et al., A Li4Ti5O12+AC/LiMn2O4+AC hybrid battery capacitor with good cycle performance. [J]. Journal of Alloys and Compounds 695 (2017) 1685-1690.
[45] Sun X Z, Zhang X, Huang B, et al., (LiNi0.5Co0.2Mn0.3O2 + AC)/graphite hybrid energy storage device with high specific energy and high rate capability. [J]. Journal of Power Sources 243 (2013) 361-368.
[46] Sun X, Zhang X, Huang B, et al., Effects of separators on electrochemical performances of electrical double layer capacitor and hybrid battery-supercapacitor [J]. Acta Physico-Chimica Sinica 30 (2014) 485-491.
[47] Aravindan V, Chuiling W, Madhavi S, High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode. [J]. Journal of Materials Chemistry 22 (2012) 16026-16031.
[48] Naoi K, Ishimoto S, Isobe Y, et al., High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. [J]. Journal of Power Sources 195 (2010) 6250-6254.
[49] Naoi K, Ishimoto S, Miyamoto J-i, et al., Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. [J]. Energy & Environmental Science 5 (2012) 9363-9373.
[50] Zhang S, Li C, Zhang X, et al., High Performance Lithium-Ion Hybrid Capacitors Employing Fe3O4-Graphene Composite Anode and Activated Carbon Cathode [J]. ACS Applied Materials & Interfaces, (2017), DOI: 10.1021/acsami.7b03452.
[51] Naoi K, Kisu K, Iwama E, et al., Ultrafast Cathode Characteristics of Nanocrystalline-Li3V2(PO4)3/Carbon Nanofiber Composites. [J]. Journal of the Electrochemical Society 162 (2015) A827-A833.
[52] Naoi K, Evolution of Energy Storage on the Platform of Supercapacitors. [J]. Electrochemistry 81 (2013) 775-776.
[53] Kisu K, Iwama E, Onishi W, et al., Ultrafast nano-spherical single-crystalline LiMn0.792Fe0.198Mg0.010PO4 solid-solution confined among unbundled interstices of SGCNTs. [J]. Journal of Materials Chemistry A 2 (2014) 20789-20798.
[54] Kisu K, Iwama E, Naoi W, et al., Electrochemical kinetics of nanostructure LiFePO4/graphitic carbon electrodes. [J]. Electrochemistry Communications 72 (2016) 10-14.
[55] Naoi K, Kisu K, Iwama E, et al., Ultrafast charge-discharge characteristics of a nanosized core-shell structured LiFePO4 material for hybrid supercapacitor applications. [J]. Energy & Environmental Science 9 (2016) 2143-2151.
[56] Naoi K, Kurita T, Abe M, et al., Ultrafast Nanocrystalline-TiO2(B)/Carbon Nanotube Hyperdispersion Prepared via Combined Ultracentrifugation and Hydrothermal Treatments for Hybrid Supercapacitors. [J]. Advanced Materials 28 (2016) 6751.
[57] Iwama E, Kawabata N, Nishio N, et al., Enhanced Electrochemical Performance of Ultracentrifugation-Derived nc-Li3VO4/MWCNT Composites for Hybrid Supercapacitors. [J]. ACS Nano 10 (2016) 5398-5404.
[58] Liu M, Zhang L, Han P, et al., Controllable Formation of Niobium Nitride/Nitrogen-Doped Graphene Nanocomposites as Anode Materials for Lithium-Ion Capacitors. [J]. Particle & Particle Systems Characterization 32 (2015) 1006-1011.
[59] Wang R, Liu P, Lang J, et al., Coupling effect between ultra-small Mn3O4 nanoparticles and porous carbon microrods for hybrid supercapacitors. [J]. Energy Storage Materials 6 (2017) 53-60.
[60] Wang R, Lang J, Zhang P, et al., Fast and Large Lithium Storage in 3D Porous VN Nanowires-Graphene Composite as a Superior Anode Toward High-Performance Hybrid Supercapacitors. [J]. Advanced Functional Materials 25 (2015) 2270-2278.
[61] Gu H, Zhu Y-E, Yang J, et al., Nanomaterials and Technologies for Lithium-Ion Hybrid Supercapacitors. [J]. ChemNanoMat 2 (2016) 578-587.
[62] Yang M, Zhong Y, Ren J, et al., Fabrication of High-Power Li-Ion Hybrid Supercapacitors by Enhancing the Exterior Surface Charge Storage. [J]. Advanced Energy Materials 5 (2015) 1500550
[63] Liu S Q, Liu S Q, Huang K L, et al., A novel Et4NBF4 and LiPF6 blend salts electrolyte for supercapacitor battery. [J]. Journal of Solid State Electrochemistry 16 (2012) 1631-1634.
[64] Schroeder M, Winter M, Passerini S, et al., On the use of soft carbon and propylene carbonate-based electrolytes in Lithium-ion capacitors. [J]. Journal of the Electrochemical Society 159 (2012) A1240-A1245.
[65] Qian Y, Niehoff P, Börner M, et al., Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode. [J]. Journal of Power Sources 329 (2016) 31-40.
[66] Deng B, Wang H, Ge W, et al., Investigating the influence of high temperatures on the cycling stability of a LiNi0.6Co0.2Mn0.2O2 cathode using an innovative electrolyte additive. [J]. Electrochimica Acta 236 (2017) 61-71.
[67] Cao W J, Shih J, Zheng J P, et al., Development and Characterization of Li-ion Capacitor Pouch Cells. [J]. Journal of Power Sources 257 (2014) 388-393.
[68] Zhang J, Liu X, Wang J, et al., Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors. [J]. Electrochimica Acta 187 (2016) 134-142.
[69] Yu X, Deng J, Zhan C, et al., A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes. [J]. Electrochimica Acta (2017).
[70] Zhao Hengbing, Burke Andrew, Fuel cell powered vehicles using supercapaciotrs: Device characteristics, control strategies, and simulation results, in: University of California, Davis, 2010. |