电化学(中英文) ›› 2015, Vol. 21 ›› Issue (4): 344-352. doi: 10.13208/j.electrochem.150210
陈如意1,张朋乐1,廖森梁2,李馨然1,王忠德1,郝晓刚1*
收稿日期:
2015-02-10
修回日期:
2015-04-22
出版日期:
2015-08-28
发布日期:
2015-08-28
通讯作者:
郝晓刚
E-mail:xghao@tyut.edu.cn
基金资助:
国家自然科学基金项目(No. 21276173,No. 21476156,No. 21306123)资助
CHEN Ru-yi1, ZHANG Peng-le1, LIAO Sen-liang2, WANG Zhong-de1, HAO Xiao-gang1*
Received:
2015-02-10
Revised:
2015-04-22
Published:
2015-08-28
Online:
2015-08-28
Contact:
HAO Xiao-gang
E-mail:xghao@tyut.edu.cn
摘要: 采用循环伏安法在水相中制备了电活性聚吡咯/α-磷酸锆(PPy/α-ZrP)有机-无机杂化膜,通过FT-IR、XRD、XPS对电活性PPy/α-ZrP杂化膜进行表征. 将制备在碳毡(PTCF)基体上的电活性PPy/α-ZrP膜电极(聚吡咯/α-磷酸锆/碳毡电极,PPy/α-ZrP/PTCF)用于电控离子交换去除废水中的铅离子. 通过对PPy/α-ZrP膜电极施加氧化还原电位来调节电活性组分PPy/α-ZrP的氧化还原状态,使废水中的铅离子能够快速置入和释放. 在10 mg·L-1的Pb(II)水溶液中,膜电极对铅离子的去除效率为单纯离子交换的1.8倍,膜电极的吸附量为单纯离子交换的2倍,表明该膜电极在电控离子交换条件下对铅离子具有较强的去除效率和更高的吸附容量. 吸附过程符合准二级动力学模型,电控离子交换的准二级吸附速率常数k2(0.6142 g·mg-1·h-1)明显高于单纯离子交换(0.2632 g·mg-1·h-1).
中图分类号:
陈如意, 张朋乐, 廖森梁, 李馨然, 王忠德, 郝晓刚. 电化学法控制聚吡咯/α-磷酸锆/碳毡电极去除水中低浓度铅离子[J]. 电化学(中英文), 2015, 21(4): 344-352.
CHEN Ru-yi, ZHANG Peng-le, LIAO Sen-liang, WANG Zhong-de, HAO Xiao-gang. Electrochemical Removal of Low Concentration Pb(II) from Aqueous Solution based on PPy/α-ZrP/PTCF Electrode[J]. Journal of Electrochemistry, 2015, 21(4): 344-352.
[1] Xiong L, Chen C, Chen Q, et al. Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method[J]. Journal of Hazardous Materials, 2011,189(3): 741-748. [2] Zhao X, Jia Q, Song N, et al. Adsorption of Pb(II) from an aqueous solution by titanium dioxide/carbon nanotube nanocomposites: Kinetics, thermodynamics, and isotherms[J]. Journal of Chemical & Engineering Data, 2010, 55(10): 4428-4433. [3] Naiya T K, Bhattacharya A K, Das S K. Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina[J]. Journal of Colloid and Interface science, 2009, 333(1): 14-26. [4] Macchi G, Marani D, Pagano M, et al. A bench study on lead removal from battery manufacturing wastewater by carbonate precipitation[J]. Water Research, 1996, 30(12): 3032-3036. [5] Tofighy M A, Mohammadi T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets[J]. Journal of Hazardous Materials, 2011, 185(1): 140-147. [6] Dabrowski A, Hubicki Z, Podko?cielny P, et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 2004, 56(2): 91-106. [7] Chellammal S, Raghu S, Kalaiselvi P, et al. Electrolytic recovery of dilute copper from a mixed industrial effluent of high strength cod[J]. Journal of Hazardous Materials, 2010, 180(1): 91-97. [8] Sun B, Hao X G, Wang Z D, et al. Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: Experimental adsorption kinetics analysis[J]. Journal of Hazardous Materials, 2012, 233-234(9): 177-183. [9] Wang Z D, Ma Y, Hao X G, et al. Enhancement of heavy metals removal efficiency from liquid wastes by using potential-triggered proton self-exchange effects[J]. Electrochimica Acta, 2014, 130: 40-45. [10] Hao X G, Li Y, Pritzker M. Pulsed electrodeposition of nickel hexacyanoferrate films for electrochemically switched ion exchange[J]. Separation and Purification Technology, 2008, 63(2): 407-414. [11] Lilga M A, Orth R J, Sukamto J, et al. Metal ion separations using electrically switched ion exchange[J]. Separation and Purification Technology, 1997, 11(3): 147-158. [12] Weidlich C, Mangold K M, Jüttner K. Continuous ion exchange process based on polypyrrole as an electrochemically switchable ion exchanger[J]. Electrochimica Acta, 2005, 50(25): 5247-5254. [13] Wang Z D, Feng Y T, Hao X G, et al. An intelligent displacement pumping film system: A new concept for enhancing heavy metal ion removal efficiency from liquid waste[J]. Journal of Hazardous Materials, 2014, 274(15): 436-442. [14] Cui H, Li Q, Qian Y, et al. Defluoridation of water via electrically controlled anion exchange by polyaniline modified electrode reactor[J]. Water Research, 2011, 45(17): 5736-5744. [15] Weidlich C, Mangold K M, Jüttner K. EQCM study of the ion exchange behaviour of polypyrrole with different counterions in different electrolytes[J]. Electrochimica Acta, 2005, 50(7): 1547-1552. [16] Pan B C, Zhang Q R, Du W, et al. Selective heavy metals removal from waters by amorphous zirconium phosphate: Behavior and mechanism[J]. Water Research, 2007, 41(14): 3103-3111. [17] Jiang P J, Pan B J, Pan B C, et al. A comparative study on lead sorption by amorphous and crystalline zirconium phosphates[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 322(1/3): 108-112. [18] Takei T, Kobayashi Y, Hata H, et al. Anodic electrodeposition of highly oriented zirconium phosphate and polyaniline-intercalated zirconium phosphate films[J]. Journal of the American Chemical Society, 2006, 128(51): 16634-16640. [19] Takei T, Dong Q, Yonesaki Y, et al. Preparation of hybrid film of polyaniline and organically pillared zirconium phosphate nanosheet by electrodeposition[J]. Langmuir, 2011, 27(1): 126-131. [20] Takei T, Dong Q, Yonesaki Y, et al. Synthesis of polypyrrole-intercalated grafted zirconium phosphate films by anodic electrodeposition and their electrochemical capacities[J]. Polymers, 2010, 3(1): 1-9. [21] Wang Z D, Feng Y T, Hao X G, et al. A novel potential-responsive ion exchange film system for heavy metal removal[J]. Journal of Materials Chemistry A, 2014, 2(3): 10263-10272 . [22] Trobajo C, Khainakov S A, Espina A, et al. On the synthesis of α-zirconium phosphate[J]. Chemistry of Materials, 2000, 12(6): 1787-1790. [23] Shan H Y. Citation review of lagergren kinetic rate equation on adsorption reactions[J]. Scientometrics, 2004, 59(1): 171-177. [24] Ho Y S. Review of second-order models for adsorption systems[J]. Journal of Hazardous Materials, 2006, 136(3): 681-689. [25] Helen M, Viswanathan B, Murthy S S. Synthesis and characterization of composite membranes based on α-zirconium phosphate and silicotungstic acid[J]. Journal of Membrane Science, 2007, 292(1): 98-105. [26] Yang P, Zhang J, Guo Y. Synthesis of intrinsic fluorescent polypyrrole nanoparticles by atmospheric pressure plasma polymerization[J]. Applied Surface Science, 2009, 255(15): 6924-6929. [27] Mallouki M, Tran-Van F, Sarrazin C, et al. Electrochemical storage of polypyrrole-Fe2O3 nanocomposites in ionic liquids[J]. Electrochimica Acta, 2009, 54(11): 2992-2997. [28] Nicho M, Hu H. Fourier transform infrared spectroscopy studies of polypyrrole composite coatings[J]. Solar Energy Materials and Solar Cells, 2000, 63(4): 423-435. [29] Sun L Y, Boo W J, Sun D, et al. Preparation of exfoliated epoxy/α-zirconium phosphate nanocomposites containing high aspect ratio nanoplatelets[J]. Chemistry of Materials, 2007, 19(7): 1749-1754. [30] Wang L, Xu W H, Yang R, et al. Electrochemical and density functional theory investigation on high selectivity and sensitivity of exfoliated nano-zirconium phosphate toward lead(II)[J]. Analytical Chemistry, 2013, 85(8): 3984-3990. [31] Peng Q M, Guo J X, Zhang Q R, et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide[J]. Journal of the American Chemical Society, 2014, 136(11): 4113-4116. [32] Marcus Y. Thermodynamics of solvation of ions. Part 5.-Gibbs free energy of hydration at 298.15 K[J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87(3): 2995-2999. [33] Mashitah M, Yus Azila Y, Bhatia S. Biosorption of cadmium(II) ions by immobilized cells of pycnoporus sanguineus from aqueous solution[J]. Bioresource Technology, 2008, 99(11): 4742-4748. [34] Malkoc E, Nuhoglu Y. Investigations of nickel(II) removal from aqueous solutions using tea factory waste[J]. Journal of Hazardous Materials, 2005, 127(2): 120-128. [35] Salinas E, Elorza de Orellano M, Rezza I, et al. Removal of cadmium and lead from dilute aqueous solutions by rhodotorula rubra[J]. Bioresource Technology, 2000, 72(2): 107-112. [36] Naiya T K, Bhattacharya A K, Das S K. Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina[J]. Journal of Colloid and Interface Science, 2009, 333(1): 14-26.[37] Saeed A, Iqbal M, Akhtar M W. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk)[J]. Journal of Hazardous Materials, 2005, 117(1): 65-73.[38] Taty-Costodes V C, Fauduet H, Porte C, et al. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of pinus sylvestris [J]. Journal of Hazardous Materials, 2003, 105(1): 121-142.[39] Isaac C P J, Sivakumar A. Removal of lead and cadmium ions from water using annona squamosa shell: Kinetic and equilibrium studies[J]. Desalination and Water Treatment, 2013, 51(40): 7700-7709.[40] Gupta S S, Bhattacharyya K G. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium[J]. Journal of Environmental Management, 2008, 87(1): 46-58.[41] Wang Y, Tang X W, Chen Y M, et al. Adsorption behavior and mechanism of Cd(II) on loess soil from china[J]. Journal of Hazardous Materials, 2009, 172(1): 30-37. [42] Ho Y S, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat[J]. Water Research, 2000, 34(3): 735-742. |
[1] | 沈茎, 王子明, 郑大江, 宋光铃. 钝化与过钝化状态下304不锈钢的点蚀行为研究[J]. 电化学(中英文), 2020, 26(6): 808-814. |
[2] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
[3] | 杨纳川, 王玉, 帅毅, 陈康华. 低成本硫化物固态电解质Li6-xPS5-xClx的制备与性能研究[J]. 电化学(中英文), 2020, 26(6): 885-889. |
[4] | 晋通正, 杨雨萌, 范圣慧, 卫国英, 张昭. 溶解氧及波长对光助阳极沉积CeO2薄膜的影响[J]. 电化学(中英文), 2020, 26(6): 868-875. |
[5] | 娄景媛, 尤东江, 李雪菁. 全钒氧化还原液流电池用石墨毡电极的分步氧化活化[J]. 电化学(中英文), 2020, 26(6): 876-884. |
[6] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[7] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[8] | 朱畅, 陈为, 宋艳芳, 董笑, 李桂花, 魏伟, 孙予罕. 反应条件对铜催化CO2电还原的影响[J]. 电化学(中英文), 2020, 26(6): 797-807. |
[9] | 王学良, 丛媛媛, 邱晨曦, 王盛杰, 秦嘉琪, 宋玉江. 核壳结构Ru@PtRu纳米花电催化剂的制备及碱性氢析出反应性能研究[J]. 电化学(中英文), 2020, 26(6): 815-824. |
[10] | 陈品松, 胡一涛, 张信义, 沈培康. 立体构造石墨烯材料对铅酸蓄电池负极性能影响的研究[J]. 电化学(中英文), 2020, 26(6): 834-843. |
[11] | 张泽阳, 孙岚, 林昌健. RGO-TiO2纳米管阵列的制备及其光电性能[J]. 电化学(中英文), 2020, 26(6): 844-849. |
[12] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[13] | 王存, 张维江, 何腾飞, 雷博, 史尤杰, 郑耀东, 罗伟林, 蒋方明. NCA三元锂离子电池分荷电状态循环的热特性和容量衰退研究[J]. 电化学(中英文), 2020, 26(6): 777-788. |
[14] | 段明涛, 蒙延双, 张红帅. Ni3S2@碳纳米管复合材料的制备及其储钠性能[J]. 电化学(中英文), 2020, 26(6): 850-858. |
[15] | 王怡捷, 钮东方, 张新胜. 离子液体中18-冠醚-6添加剂对三价铬电沉积的影响[J]. 电化学(中英文), 2020, 26(6): 859-867. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||