[1] |
Yelegen N, Kümük B, Kaplan R N, İlbaş M, Kaplan Y. Numerical and experimental studies on unitized regenerative proton exchange membrane fuel cell[J]. Int. J. Hydrogen Energy, 2023, 48(35): 12969-12981.
|
[2] |
Kadyk T, Sun Y, Kaur J, Kulikovsky A, Eikerling M. Frequency response diagnostics of electrochemical energy devices[J]. Curr. Opin. Electrochem., 2023, 42: 1-5.
|
[3] |
Ren X F, Wang Y R, Liu A M, Zhang Z H, Lv Q Y, Liu B H. Current progress and performance improvement of Pt/C catalysts for fuel cells[J]. J. Mater. Chem. A., 2020, 8(46): 24284-284306.
|
[4] |
Rahim Malik F, Yuan H B, Moran J C, Tippayawong N. Overview of hydrogen production technologies for fuel cell utilization[J]. Eng. Sci. Technol., 2023, 43: 101452.
|
[5] |
Pu Z H, Zhang G X, Hassanpour A, Zheng D W, Wang S Y, Liao S J, Chen Z X, Sun S H. Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system[J]. Appl. Energy, 2021, 283: 116376.
|
[6] |
Hassan N. N, Ganesan P, Lando A A, Mustain W E, Colón-Mercado H R. Stable, high-performing bifunctional electrodes for anion exchange membrane-based unitized regenerative fuel cells[J]. J. Power Sources, 2022, 541: 231599
|
[7] |
Meda U S, Rajyaguru Y V, Pandey A. Generation of green hydrogen using self-sustained regenerative fuel cells: Opportunities and challenges[J]. Int. J. Hydrogen Energy, 2023, 48(73): 28289-28314.
|
[8] |
Kim D H, Jung H S, Kim D H, Pak C. Using distribution of relaxation times to separate the impedances in the membrane electrode assembly for high-temperature polymer electrolyte membrane fuel cells[J]. Int. J. Hydrogen Energy, 2024, 62: 389-396.
|
[9] |
Eun J, Karuppannan M, Joong O, Cho Y. Development of high-performance membrane-electrode assembly in unitized regenerative fuel cells[J]. J. Ind. Eng. Chem., 2019, 80: 527-534.
|
[10] |
Li Y Z, Liu L, Xing Y J, Zhang G C. An asymmetric membrane electrode assembly for high-performance proton exchange membrane fuel cells[J]. Int. J. Hydrogen Energy, 2024, 55: 357-364.
|
[11] |
Radestia Rahmah D, Rohendi D, Syarif N, Rachmat A, Sya’baniah NF, Hawa Yulianti D. Characterization of Electrode with Cu2O-ZnO/C and Pt-Ru/C Catalyst for Electrochemical Reduction CO2 to CH3OH[J]. Indones. J. Fundam. Appl. Chem., 2021, 6(1): 8-13.
|
[12] |
Krasnova A O, Glebova N V, Kastsova A G, Rabchinskii M K, Nechitailov A A. Thermal stabilization of nafion with nanocarbon materials[J]. Polymers, 2023, 15(9): 1-13.
|
[13] |
Rohendi D, Majlan E H, Yulianti D H, Juwita, Syarif N, Rachmat A, et al. Performance of membrane electrode assembly using Pt/C and CoFe/N-C catalysts in proton exchange membrane fuel cells[J]. Malaysian J. Anal. Sci., 2024, 28(2): 388-396.
|
[14] |
Chattot R, Mirolo M, Martens I, Kumar K, Martin V, Gasmi A, et al. Beware of cyclic voltammetry! Measurement artefact in accelerated stress test of fuel cell cathode revealed by operando X-ray diffraction[J]. J. Power Sources, 2023, 555: 1-8.
|
[15] |
Vermaak L, Neomagus H W J P, Bessarabov D G. The CO tolerance of Pt/C and Pt-Ru/C electrocatalysts in a high-temperature electrochemical cell used for hydrogen separation[J]. Membranes, 2021, 11(9): 670.
|
[16] |
Fouad A A, El-Sonbati A Z, Diab M A, Elsayad M R, Gomaa E A. Thermodynamic solvation parameters, cyclic voltammetry for CdBr2 in sodium chloride supporting electrolyte alone and in interaction with succinic acid solutions with Tafel slopes application[J]. J. Mol. Liq., 2024, 399: 124368.
|
[17] |
Won J E, Kwak D H, Han S B, Park H S, Park J Y, Ma K B, Kim D H, Park K W. PtIr/Ti4O7 as a bifunctional electrocatalyst for improved oxygen reduction and oxygen evolution reactions[J]. J. Catal., 2018, 358: 287-294.
|
[18] |
Li Y H, Jiang G, Yang Y, Song W, Yu H M, Hao J K, & Shao, Z G. PtIr/CNT as anode catalyst with high reversal tolerance in PEMFC[J]. Int. J. Hydrogen Energy. 2023; 48(93): 36500-36511.
|
[19] |
Noh H, Park Y, Bhadouria A, Tackett B M. Effects of electrochemical active surface area of Cu on electrochemical CO2 reduction in acidic electrolyte using Cu nanoparticles on surfactant-treated carbon[J]. J. Catal., 2024, 437: 115662.
|
[20] |
Bredar A R C, Chown A L, Burton A R, Farnum B H. Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications[J]. ACS Appl. Energy Mater., 2020, 3(1): 66-98.
|
[21] |
Zabara MA, Katırcı G, Civan FE, Yürüm A, Gürsel SA, Ülgüt B. Insights into charge transfer dynamics of Li batteries through temperature-dependent electrochemical impedance spectroscopy (EIS) utilizing symmetric cell configuration[J]. Electrochim. Acta, 2024, 485: 1-8.
|
[22] |
Ma X, Wang L F, Jin H Y, Chen W, Liu P, Wang J, J, Li W. Properties of gradient Ni-P-PTFE coatings on stainless steel with different polytetrafluoroethylene concentrations[J]. Thin Solid Films, 2024, 799: 1-10.
|
[23] |
Wang Q, Zhou Y W, Jin Z, Chen C, Li H, Cai W B. Alternative aqueous phase synthesis of a PtRu/C electrocatalyst for direct methanol fuel cells[J]. Catalysts, 2021, 11(8) :1-14.
|
[24] |
Sebbahi S, Assila A, Alaoui Belghiti A, Laasri S, Kaya S, Hlil E, Rachidi S, Hajjaji A. A comprehensive review of recent advances in alkaline water electrolysis for hydrogen production[J]. Int. J. Hydrogen Energy, 2024, 82: 583-599.
|
[25] |
Alabbadi A A, AlZahrani A A. Nuclear hydrogen production using PEM electrolysis integrated with APR1400 power plant[J]. Int. J. Hydrogen Energy. 2024, 60: 241-260.
|
[26] |
Chen W S, Meng K, Zhou H, Zhou Y, Deng Q B, Chen B. Optimization research on round-trip efficiency of a CHP system based on 10 kW-grade unitized regenerative fuel cell[J]. Energy Convers. Manag., 2023, 280(1): 1-14.
|
[27] |
Wang H Y, Zhang Y F, Jin P, Cai X C, Du J Y, Zhang W L, Wang H R, Li R X. Dynamic thermodynamic performance analysis of a novel pumped thermal electricity storage (N-PTES) system coupled with liquid piston[J]. J. Energy Storage., 2024, 84 :110836.
|
[28] |
Qiao J N, Guo H, Chen H, Ye F. Improving round-trip energy efficiency of a unitized regenerative fuel cell by adopting staircase flow channel and counter flow configuration[J]. Energy Convers. Manag., 2022, 271: 116345.
|
[29] |
Song H, Shao X Y, Zhang H, Jiang P X, Wen X F, Zhan Z G. Effects of Nafion content in the catalyst layer of PEMFC on the transport phenomenon among nanoscale particles[J]. Int. J. Hydrogen Energy, 2024, 67: 282-293.
|
[30] |
Chen G Y, Wang C, Lei Y J, Zhang J, Mao Z, Mao Z Q, Guo J W, Li J Q, Ouyang M G. Gradient design of Pt/C ratio and Nafion content in cathode catalyst layer of PEMFCs[J]. Int. J. Hydrogen Energy, 2017; 42(50): 29960-29965.
|