[1] Xu H, Lei J. Learning from nature: building bio-inspired smart nanochannels[J]. Acs Nano, 2009, 3(11): 3339-3342.
[2] Plesa C, Kowalczyk S W, Zinsmeester R, et al. Fast translocation of proteins through solid state nanopores[J]. Nano Letters, 2013, 13(2): 658-663.
[3] Pang P, He J, Park J H, et al. Origin of giant ionic currents in carbon nanotube channels[J]. Acs Nano, 2011, 5(9): 7277-7283.
[4] Vlassiouk I, Smirnov S, Siwy Z. Ionic selectivity of single nanochannels[J]. Nano Letters, 2008, 8(7): 1978-1985.
[5] Ai Y, Zhang M, Sang W J, et al. Effects of electroosmotic flow on ionic current rectification in conical nanopores[J]. Journal of Physical Chemistry C, 2010, 114(9): 3883-3890.
[6] Dzmitry H, Perry J M, Jacobson S C, et al. Propagating concentration polarization and ionic current rectification in a nanochannel-nanofunnel device[J]. Analytical Chemistry, 2011, 84(1): 267-274.
[7] Jung-Yeul J, Punarvasu J, Leo P, et al. Electromigration current rectification in a cylindrical nanopore due to asymmetric concentration polarization[J]. Analytical Chemistry, 2009, 81(8): 3128-3133.
[8] Ying-Chih W, Stevens A L, Jongyoon H. Million-fold preconcentration of proteins and peptides by nanofluidic filter[J]. Analytical Chemistry, 2005, 77(14): 4293-4299.
[9] Adrien P, Clément N, Anne-Marie H G, et al. Electropreconcentration with charge-selective nanochannels[J]. Analytical Chemistry, 2008, 80(24): 9542-9550.
[10] Rhokyun K, Sung Jae K, Jongyoon H. Continuous-flow biomolecule and cell concentrator by ion concentration polarization[J]. Analytical Chemistry, 2011, 83(19): 7348-7355.
[11] Yeh L H, Zhang M, Qian S, et al. Ion concentration polarization in polyelectrolyte-modified nanopores[J]. Journal of Physical Chemistry C, 2012, 116(15): 8672-8677.
[12] Cheng L J, Guo L J. Rectified Ion transport through concentration gradient in homogeneous silica nanochannels[J]. Nano Letters, 2007, 7(10): 3165-3171.
[13] Kubeil C, Bund A. The role of nanopore geometry for the rectification of ionic currents[J]. J.phys.chem.c, 2011, 115(16): 7866-7873.
[14] Zhang B, Ai Y, Liu J, et al. Polarization effect of a dielectric membrane on the ionic current rectification in a conical nanopore[J]. Journal of Physical Chemistry C, 2011, 115(50): 24951-24959.
[15] Singh K P, Kumar M. Effect of nanochannel diameter and debye length on ion current rectification in a fluidic bipolar diode[J]. Journal of Physical Chemistry C, 2011, 115(46): 22917-22924.
[16] Heyden F H J V D, Bonthuis D J, Stein D, et al. Power generation by pressure-driven transport of ions in nanofluidic channels[J]. Nano Letters, 2007, 7(4): 1022-1025.
[17] Yeh L H, Xue S, Sang W J, et al. Field effect control of surface charge property and electroosmotic flow in nanofluidics[J]. J.Phys.Chem.C, 2012, 116(6): 4209-4216.
[18] Chih-Chang C, Yutaka K, Kyojiro M, et al. Numerical simulation of proton distribution with electric double layer in extended nanospaces[J]. Analytical Chemistry, 2013, 85(9): 4468-4474.
[19] Wen-Jie L, Holden D A, White H S. Pressure-dependent ion current rectification in conical-shaped glass nanopores[J]. Journal of the American Chemical Society, 2011, 133(34): 13300-13303.
[20] Li-Hsien Y, Mingkan Z, Shizhi Q. Ion transport in a pH-regulated nanopore[J]. Analytical Chemistry, 2013, 85(15): 7527-7534.
[21] Antonio A, Patricio R, Elena G G, et al. A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted single ion channel.[J]. Journal of Physical Chemistry B, 2006, 110(110):21205-9.
[22] Wanunu M, Meller A. Chemically modified solid-state nanopores.[J]. Nano Letters, 2007, 7(6):1580-5.
[23] Li-Hsien Y, Mingkan Z, Shizhi Q, et al. Ion concentration polarization in polyelectrolyte-modified nanopores[J]. Journal of Physical Chemistry C, 2012, 116(15): 8672-8677.
[24] Zhenping Zeng, Ye Ai, Shizhi Qian. PH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes.[J]. Physical Chemistry Chemical Physics, 2014, 16(6):2465-2474.
[25] Wen-Jie L, Holden D A, White H S. Pressure-dependent ion current rectification in conical-shaped glass nanopores.[J]. Journal of the American Chemical Society, 2011, 133(34):13300-3.
[26] Orit P, Mario T, Martin K, et al. Morphology control of hairy nanopores[J]. Acs Nano, 2011, 5(6): 4737-4747.
[27] Mario T, Yitzhak R, Igal S. Ion transport and molecular organization are coupled in polyelectrolyte-modified nanopores[J]. Journal of the American Chemical Society, 2011, 133(44): 17753-17763.
[28] Mario T, Yitzhak R, Igal S. Transport rectification in nanopores with outer membranes modified with surface charges and polyelectrolytes[J]. Acs Nano, 2013, 7(10): 9085-9097.
[29] Ralf Z, Dirk K, Martin K, et al. Electrokinetics of a poly(N-isopropylacrylamid-co-carboxyacrylamid) soft thin film: eviden ce of diffuse segment distribution in the swollen state[J]. Langmuir, 2010, 26(26): 18169-18181.
[30] Vlassiouk I, Smirnov S, Siwy Z. Ionic selectivity of single nanochannels[J]. Nano Letters, 2008, 8(7): 1978-1985.
[31] Basit Y, Mubarak A, Reinhard N, et al. Single conical nanopores displaying pH-tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes[J]. Journal of the American Chemical Society, 2009, 131(6): 2070-2071.
[32] Ali M, Ramirez P, Mafé S, et al. A pH-tunable nanofluidic diode with a broad range of rectifying properties[J]. Acs Nano, 2009, 3(3): 603-608. |