[1] Luo W, Shen F, Bommier C, et al. Na-ion battery anodes: materials and electrochemistry[J]. Accounts of Chemical Research, 2016, 49(2): 231-240.
[2] Slater M D, Kim D H, Lee E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958.
[3] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
[4] Yang Z G, Zhang J L, Kintner-Meyer M, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 11(5): 3577-3613.
[5] Pan H L, Hu Y S, Chen L Q, et al. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmengtal Science, 2013, 6(8): 2338-2360.
[6] Gu M, Kushima A, Shao Y Y, et al. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries[J]. Nano Letters, 2013, 13(11): 5203-5211.
[7] Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials, 2008, 20(15): 2878-2887.
[8] Ma X Y, Luo W, Yan M Y, et al. In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices[J]. Nano Energy, 2016, 24: 165-188.
[9] Li H (李泓), Lv Y C (吕迎春). A review on electrochemical energy storage[J]. Journal of Electrochemistry (电化学), 2015, 21(5): 412-424.
[10] Liu J X(刘进轩), Xiang J(向娟), Tian Z Q(田中群), et al. Substrates made by electrodeposition for measuring electrical properties of one dimensional nanomaterials[J]. Journal of Electrochemistry (电化学), 2004, 10(1): 20-26.
[11] Xu X, Yan M Y, Tian X C, et al. In situ investigation of Li and Na ion transport with single nanowire electrochemical devices[J]. Nano Letters, 2015, 15(6): 3879-3884.
[12] Mai L Q, Tian X C, Xu X, et al. Nanowire electrodes for electrochemical energy storage devices[J]. Chemical Reviews, 2014, 114(23): 11828-11862.
[13] Liao J Y, Manthiram A. High-performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium-ion storage[J]. Nano Energy, 2015, 18: 20-27.
[14] Peng M H, Li B, Yan H J, et al. Ruthenium-oxide-coated sodium vanadium fluorophosphate nanowires as high-power cathode materials for sodium-ion batteries[J]. Angewandte Chemie International Edition. 2015, 54(22): 6452 -6456.
[15] Liu C Y, Zhang N, Kang H Y, et al. WS2 nanowires as a high-performance anode for sodium-ion batteries[J]. Chemistry-A European Journal. 2015, 21(33): 11878–11884.
[16] Wang X P, Niu C J, Meng J S, et al. Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability[J]. Advanced Energy Materials, 2015, 5(17): 1500716.
[17] Dong Y F, Li S, Zhao K N, et al. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes[J]. Energy & Environmental Science, 2015, 8(4): 1267-1275.
[18] Ren W H, Zheng Z P, Xu C, et al. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries[J]. Nano Energy, 2016, 25: 145-153.
[19] Nie C G(聂茶庚), Gong Z L(龚正良), Sun L(孙岚), et al. Lithium insertion into TiO2(B) nanobelts synthesized by the "soft chemical" method[J]. Journal of Electrochemistry (电化学), 2004, 10(3): 330-333.
[20] Wei N, Cui H Z, Song Q, et al. Ag2O nanoparticle/TiO2 nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation[J]. Applied Catalysis B: Environmental, 2016, doi: 10.1016/j.apcatb.2016.05.040.
[21] Xia W W, Xu F, Zhu C Y, et al. Probing microstructure and phase evolution of α-MoO3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy[J]. Nano Energy, 2016, 27: 447-456.
[22] Yuan S, Liu Y B, Xu D, et al. Pure single-crystalline Na1.1V3O7.9 nanobelts as superior cathode materials for rechargeable sodium-ion batteries[J]. Advance Science, 2015, 2(3), 1400018.
[23] Sun Y, Li C S, Yang Q R, et al. Electrochemically active, novel layered m-ZnV2O6 nanobelts for highly rechargeable Na-ion energy storage[J]. Electrochimica Acta, 2016, 205: 62–69.
[24] Wei Q L, Jiang Z Y, Tan S S, et al. Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage[J]. ACS Applied Materials & Interfaces, 2015, 7(33): 18211-18217.
[25] Zhang H F(张宏芳), Sheng Q L(盛庆林), Zheng J B(郑建斌). Electrocalytic oxidation of hydrazine at rutin carbon nanotubes modified electrode[J]. Journal of Electrochemistry (电化学), 2011, 17(1): 107-111.
[26] Ramanathan M, Patil M, Epur R, et al. Gold-coated carbon nanotube electrode arrays: immunosensors for impedimetric detection of bone biomarkers[J]. Biosensors & Bioelectronics, 2016, 77: 580-588.