[1] Lv S Q(吕世权), Long G H(龙国徽), Meng X W(孟祥伟), et al. Perovskite cathode for solid oxide fuel cells[J]. Chinese Journal of Power Source(电源技术), 2010, 34(7): 734-737.[2] Guo Y B(郭友斌), Lu L H(陆丽华), Chu L(储凌), et al. Research Progress in perovskite-like cathode for intermediate temperature solid oxide fuel cells[J]. Bulletin of the Chinese Ceramic Society(硅酸盐通报), 2009, 28(5): 991-996.[3] Wu L W(邬理伟), Zheng Y P(郑颖平), Sun Y M(孙岳明), et al. Research progress in composite cathode of SOFC[J]. Chinese Battery Industry(电池工业), 2010, 15(1): 53-56.[4] Kadowaki T, Shiomitsu T, Marsuda E, et al. Applicability of heat resisting alloys to the separator of planar type solid oxide fuel cell. Solid State Ionics, 1993, 67(1/2): 65-69.[J][5] Yang Z, Weil K S, Paxton D M, et al. Selection and evaluation of heat-resistant alloys for SOFC interconnect applications[J]. Journal of the Electrochemical Society, 2003, 150(9): A1188-A1201.[6] Horita T, Xiong Y, Kishimoto H, et al. Application of Fe-Cr alloys to solid oxide fuel cells for cost-reduction: Oxidation behavior of alloys in methane fuel Journal of Power Sources, 2004, 131(1/2): 293-298.[J].[7] Tucker M C, Kurokawa H, Jacobson C P, et al. A fundamental study of chromium deposition on solid oxide fuel cell cathode materials Journal of Power Sources, 2006, 160(1): 130-138.[J].[8] Konysheva E, Penkalla H, Wessel E, et al. Chromium poisoning of perovskite cathodes by the ODS alloy Cr5Fe1Y2O3 and the high chromium ferritic steel Crofer22APU[J]. Journal of the Electrochemical Society, 2006, 153(4): A765-A773.[9] Yokokawa H, Horita T, Sakai N, et al. Thermodynamic considerations on Cr poisoning in SOFC cathodes. Solid State Ionics, 2006, 177(35/36): 3193-3198.[J][10] Liu D J, Almer J, Cruse T. Characterization of Cr poisoning in a solid oxide fuel cell cathode using a high energy X-ray microbeam[J]. Journal of the Electrochemical Society, 2010, 157(5): B744-B750.[11] Horita T, Xiong Y P, Kishimoto H, et al. Chromium poisoning and degradation at (La,Sr)MnO3 and (La,Sr)FeO3 cathodes for solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2010, 157(5): B614-B620.[12] Chiba R, Yoshimura F, Sakurai Y. An investigation of LaNi1-xFexO3 as a cathode material for solid oxide fuel cells[J]. Solid State Ionics, 1999, 124(3/4): 281-288.[13] Zhen Y D, Tok A I Y, Jiang S P, et al. La(Ni,Fe)O3 as a cathode material with high tolerance to chromium poisoning for solid oxide fuel cells[J]. Journal of Power Sources, 2007, 170(1): 61-66.[14] Orui H, Watanabe K, Chiba R, et al. Application of LaNi(Fe)O3 as SOFC Cathode[J].Journal of the Electrochemical Society, 2004, 151(9): A1412-A1417. [15] Bevilacqua M, Montini T, Tavagnacco C, et al. Preparation, characterization, and electrochemical properties of pure and composite LaNi0.6Fe0.4O3-based cathodes for IT-SOFC[J]. Chemistry of Materials, 2007, 19: 5926-5936.[16] Hashimoto S I, Kammer K, Larsen P H, et al. A study of Pr0.7Sr0.3Fe1_xNixO3_δ as a cathode material for SOFCs with intermediate operating temperature[J]. Solid State Ionics, 2005, 176:1013-1020.[17] Stodolny M K, Boukamp B A, Blank D H A, et al. Impact of Cr-poisoning on the conductivity of LaNi0.6Fe0.4O3[J]. Journal of Power Sources, 2011(22), 196: 9290-9298.[18] Stodolny M K, Boukamp B A, Blank D H A, et al. Cr-poisoning of a LaNi0.6Fe0.4O3 cathode under current load[J]. Journal of Power Sources, 2012, 209: 120-129.[19] Jain S R, Adiga K C, Vemeker V R P. A new approach to thermochemical calculation of condensed fuel-oxidizer mixtures[J]. Combustion and Flame, 1981, 40(1): 71-76.[20] Liu H(刘珩),Huang B(黄波),Zhu X J(朱新坚). Preparation and characterization of the LaNi0.6Fe0.4O3-δ cathode for intermediate temperature solid oxide fuel cell[J]. Journal of Electrochemistry(电化学), 2011, 17(4): 421-426.[21] Huang B, Ye X F, Wang S R, et al. Performance of Ni/ScSZ cermet anode modified by coating with Gd0.2Ce0.8O2 for a SOFC running on methane fuel[J]. Journal of Power Sources, 2006, 162(2): 1172-1181.[22] Zhou W, Ran R, Shao Z P, et al. Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8 Fe0.2O3-δcathodes prepared via electrodes deposition[J]. Electrochimica Acta, 2008, 53(13): 4370-4380.[23] Adler S B. Limitations of charge-transfer models for mixed-conducting oxygen electrodes[J]. Solid State Ionics, 2000, 135: 603-612.[24] Fu C J, Sun K N, Zhang N, et al. Electrochemical characteristics of LSCF-GDC composite cathodes for intermediate temperature SOFC[J]. Electrochimica Acta, 2007, 52(13): 4589-4594.[25] Qiang F, Sun K N, Zhang N Q, et al. Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy[J]. Journal of Power Sources, 2007, 168: 338-345.[26] Jiang S P, Leng Y J, Chan S H, et al. Development of(La,Sr)MnO3-based cathodes for intermediate temperature solid oxide fuel cells[J]. Electrochemical and Solid-State Letters, 2003, 6(4): A67-A70.[27] Li J L, Wang S R, Wang Z R, et al. (La0.74Bi0.10Sr0.16)MnO3-δ-Ce0.8Gd0.2O2-δ cathodes fabricated by ion-impregnating method for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2009, 188(2): 453-457. |