[1] Wu D, Shi Q C, Zhou J T, et al. Deep treatment of pulping wastewater using three phase fluidized bed electrode reactor[J]. Journal of Electrochemistry, 2006, 12(4): 412-415. [2] Pan K, Tian M, Jiang Z H, et al. Electrochemical oxidation of lignin at lead dioxide nanoparticles photoelectrodeposited on TiO2 nanotube arrays[J], Electrochimica Acta, 2012, 60: 147-153.[3] Tian M, Bakovic L, Chen A. Kinetics of the electrochemical oxidation of 2-nitrophenol and 4-nitrophenol studied by in situ UV spectroscopy and chemometrics[J]. Electrochimica Acta, 2007, 52(23): 6517-6524.[4] Li T C, Zhu S L. Research on phenol wastewater treatment by electrochemical oxidation[J]. Journal of Electrochemistry, 2005, 11(1): 101-104.[5] Wang B C, Sun Y P. Adsorption and oxidation of phenol electrode processes[J]. Journal of Electrochemistry, 2003, 9(4): 475-478.[6] O’Connor O A, Young L Y. Toxicity and anaerobic biodegradability of substituted phenols under methanogenic conditions[J]. Environmental Toxicology and Chemistry, 1989, 8(10): 853-862.[7] Tian M, Wen J L, MacDonald D, et al. A novel approach to convert lignin into value-added products [J], Electrochemistry Communications, 2010, 12(4): 527-530.[8] Liu Y, Liu D, Zhao S L, et al .Electrochemical oxidation of the phenol in the chloride system[J]. Journal of Electrochemistry, 2007, 13(1): 30-34.[9] Li Z F, Electrochemical disinfection method to treat wastewater from hospitals[J]. Journal of Electrochemistry, 2005, 11(4): 420-424.[10] Tolba R, Tian M, Wen J L, et al. Electrochemical oxidation/modification of lignin at IrO2-based mixed oxide electrodes[J]. Journal of Electroanalytical Chemistry, 2010, 649(1/2): 9-16.[11] Cao B, Xu J W, Ding L H, et al. Preparation and electrochemical characterization of anatase TiO2 nanotubes[J]. Journal of Electrochemistry, 2006, 12(4): 445-448. [12] Lan B B, Zhou J Z, Xi Y Y, et al. Special Photoelectrochemical response of nano-crystalline TiO2 electrode[J]. Journal of Electrochemistry, 2006, 12(1): 16-19. [13] Tian M, Thind S S, Chen S, et al. Significant enhancement of the photoelectrochemical activity of TiO2 nanotubes[J]. Electrochemistry Communications, 2011, 13(11): 1186-1189.[14] Egerton T A, Christensen P A, Harrison R W, et al. The effect of UV absorption on the photocatalytic oxidation of 2-nitrophenol and 4-nitrophenol[J]. Jouranal of Applied Electrochemistry, 2005, 35(7/8): 799-813.[15] Tian M, Adams B, Wen J L, et al. Photoelectrochemical oxidation of salicyclic acid and salicylaldehyde on titanium dioxide nanotube arrays[J]. Electrochimica Acta, 2009, 54(14): 3799-3805.[16] Yang S M, Wang J C, Kou H Z, et al. Influence of tert-butylpyridine on the band energetics of nanostructured TiO2 electrodes and the photoelectrochemical properties of dye-sensitized electrodes[J]. Journal of Electrochemistry, 2011, 17(2): 204-211.[17] Yun H, Lin C J, Li J, et al. Photoelectrochemical properties of N, S, and Cl modified nano TiO2 thin Films[J]. Journal of Electrochemistry, 2010, 16(4): 411-415A.[18] Zhang Y H, Zhang H X, Xu Y X, at al. Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO2[J]. Journal of Solid State Chemistry, 2004, 177(10): 3490-3498.[19] Wu P F, Li M C, Shen J N, et al. Preparation of photo-electrochemical anticorrosion TiO2 films by anodization method[J]. Journal of Electrochemistry, 2004, 10(3): 353-358.[20] Wu G, Wen J, Nigro S, et al. One-step synthesis of N&F co-doped mesoporous TiO2 photocatalysts with high visible light activity[J]. Nanotechnology, 2010, 21: 085701/1 – 6. [21] Shibata T, Sakai N, Fukuda K, et al. Photocatalytic properties of titania nanostructured films fabricated from titania nanosheets[J]. Physical Chemistry Chemical Physics, 2007, 9(19): 2413.[22] Wu G, Chen A. Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications[J], Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195: 47 – 53.[23] Antunes C S A, Bitti M, Salamone M, et al. Early stages in the TiO2-photocatalyzed degradation of simple phenolic and non-phenolic lignin model compounds[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3): 453-462.[24] Ruggiero R, Machado A E H, Castellan A, et al. Photoreactivity of lignin model compounds in the photobleaching of chemical pulps.1. Irradiation of 1-(3,4-dimethoxyphenyl)-2-(3'-methoxyphenoxy) -1,3-dihydroxypropane in the presence of singlet oxygen sensitizer or hydrogen peroxide in basic methanol solution[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 110(1): 91-97.[25] Chen A, Rogers E, Compton R G. Abrasive stripping voltammetric studies of lignin and lignin model compounds[J]. Electroanalysis, 2010, 22: 1037–1044.[26] Zhang S G, Lei W, Xia M Z, et al. QSAR study on N-containing corrosion inhibitors: Quantum chemical approach assisted by topological index[J]. Journal of Molecular Structure, 2005, 732(1/3): 173-182.[27] Lashgari M, Arshadi M R, Parsafar G A. A simple and fast method for comparison of corrosion inhibition powers between pairs of pyridine derivative molecules[J]. Corrosion, 2005, 61(8): 778-783.[28] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.[29] Zlamal M, Macak J M, Schmuki P, et al. Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes[J]. Electrochemistry Communications, 2007, 9(12): 2822-2826.[30] Vinodgopal K, Stafford U, Gray K A et al. Electrochemically assisted photocatalysis. 2. The role of oxygen and reaction intermediates in the degradation of 4-chlorophenol on immobilized TiO2 particulate films[J]. Journal of Physical Chemistry, 1994, 98(27): 6797-6803.[31] Schmidt J A, Heitner C. Light-induced yellowing of mechanical and ultra-high-yield pulps. 2. Radical-induced cleavage of etherified gualacylglycero-beta-arylether groups is the main degradative pathway[J]. Journal of Wood Chemistry Technology, 1993, 13(3): 309-325.[32] Al-Ekabi H, Serpone N., Kinetics studies in heterogeneous photocatalysis. 1 photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over TiO2 supported on a glass matrix[J]. Journal of Physical Chemistry, 1988, 92(20): 5726-5731. [33] Matthews R W. Kinetics of photocatalytic oxidation of organic solutes over titanium-dioxide[J]. Journal of Catalysis, 1988, 111(2): 264-272. [34] Matthews R W. Photooxidation of organic impurities in water using thin-films of titanium-dioxide[J]. Journal of Physical Chemistry, 1987, 91(12): 3328-3333.[35] Chen D W, Ray A K. Photodegradation kinetics of 4-nitrophenol in TiO2 suspension[J]. Water Research, 1998, 323(11): 3223-3234.[36] Bachrach S M. Computational organic chemistry[M]. John Wiley & Sons, 2007.[37] Tian M, Thind S, Simko M, et al. Quantitative structure-reactivity study of electrochemical oxidation of phenolic compounds at the SnO2-based electrode[J]. Journal of Physical Chemistry A, 2012, 116: 2927-2934..[38] Pearson R G, Electronic spectra and chemical reactivity[J]. Journal of the American Chemical Society, 1988, 110(7): 2092-2097.[39] Szwacki N G, Sadrzadeh A, Yakobson B I. B-80 fullerene: An ab initio prediction of geometry, stability, and electronic structure[J]. Physical Review Letters, 2007, 98(16):166804. |