[1] Dai S G(戴树桂). Environmental chemistry (Second edition)[M]. Beijing: Higher Education Press(高等教育出版社), 2006: 390-403.[2] Bassam A A, Yusuf Y, A. Savas K. Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes[J]. Separation and Puri?cation Technology, 2012, 86: 248-254.[3] Rajeshwar K, Ibanez J, Swain G M. Electrochemistry and the environment[J]. Journal of Applied Electrochemistry, 1994, 24(11): 1077-1091.[4] Martin W, Ralph J B. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004, 104(10): 4245-4269.[5]Vladimir S B. Fuel cells: Problems and solutions[M]. Beijing: Posts & Telelcom Press(人民邮电出版社), 2011: 6-7.[6] Dalas E, Kobotiatis L. Primary solid-state batteries constructed from copper and indium sulphides[J]. Journal of Materials Science, 1993, 28(24): 6595-6597. [7] Logan B E. Microbial fuel cells[M]. Hoboken, New Jersey: John Wiley & Sons, Inc, 2007: 5[8] Lide D R. Handbook of chemistry and physics[M]. 84th edition, CRC PRESS, 2003-2004: 1217-1222.[9] Logan B E. Microbial Fuel Cells[M]. Hoboken, New Jersey: John Wiley & Sons, Inc, 2007, 51-55.[10] Rabaey K and Rozendal R A. Microbial electrosynthesis—revisiting the electrical route for microbial production[J]. Nature Reviews Microbiology, 2010, 8: 706-716. [11] Li Z J, Zhang X W, Lei L C. Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell[J].Process Biochemistry, 2008, 43(12): 1352-1358.[12] Wang G, Huang L P, Zhang Y F. Cathodic reduction of hexavalent chromium[Cr(VI)] coupled with electricity generation in microbial fuel cells[J]. Biotechnology Letters, 2008, 30(11): 1959-1966.[13] Wang Z J, Lim B S, Choi C S. Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell[J]. Bioresource Technology, 2011, 102(10): 6304-6307.[14] Annemiek T H, Liu F, Van Der Weijden R, et al. Copper recovery combined with electricity production in a microbial fuel cell[J]. Environmental Science & Technology, 2010, 44(11): 4376-4381.[15] Tao H C, Liang M, Li W, et al. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell[J]. Journal of Hazardous Materials, 2011, 189(1/2): 186-192.[16] Clauwaert P, Rabaey K, Aelterman P, et al. Biological denitrification in microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9): 3354-3360.[17] Rozendal R A, Jeremiasse A W, Hamelers H V M, et al. Hydrogen production with a microbial biocathode[J]. Environmental Science & Technology, 2008, 42(2): 629-634.[18] Tandukar M, Huber S J, Onodera T, et al. Biological chromium(VI) reduction in the cathode of a microbial fuel cell[J]. Environmental Science & Technology, 2009, 43(21): 8159-8165.[19] Huang L P, Chen J W, Quan X, et al. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell[J]. Bioprocess and Biosystems Engineering, 2010, 33(8): 937-945.[20] Huang L P, Chai X L, Cheng S A, et al. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation[J]. Chemical Engineering Journal, 2011, 166(2): 652-661.[21] Huang L P, Chai X L, Chen G H, et al. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells[J]. Environmental Science & Technology, 2011, 45(11): 5025-5031.[22] Liu L A, Yuan Y, Li F B, et al. In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria[J]. Bioresource Technology, 2011, 102(3): 2468-2473.[23] Zhu Y L, Liu C, Liang J S, et al. Investigation of the effects of compression pressure on direct methanol fuel cell[J]. Journal of Power Sources, 2011, 196(1): 264-269.[24] Liu Y B, Li J H, Zhou B X, et al. Ef?cient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell[J].Water Research, 2011, 45(13): 3991-3998.[25] Antonino S A, Peter B, Bruno S, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4: 366-377.[26] Srinivasan S, Mosdale R, Stevens P, et al. Fuel cells: Reaching the era of clean and ef?cient power generation in the twenty-?rst century[J]. Annual Review of Environment and Resources, 1999, 24: 281-238.[27] Yi L H, Song Y F, Yi W, et al. Carbon supported Pt hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(18): 11512-11518.[28] Zhao J, Chen W X, Zheng Y F, et al. Novel carbon supported hollow Pt nanospheres for methanol electrooxidation[J]. Journal of Power Sources, 2006, 162(1): 168-172.[29] Liang H P, Zhang H M, Hu J S, et al. Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts[J]. Angewandte Chemie International Edition, 2004, 116(12): 1566-1569.[30] Yan W, Wang D, Gerardine G B. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation[J]. Electrochimica Acta, 2012, 61: 25-30. |