欢迎访问《电化学(中英文)》期刊官方网站,今天是 分享到:

电化学(中英文) ›› 2023, Vol. 29 ›› Issue (2): 2215001.  doi: 10.13208/j.electrochem.2215001

所属专题: “电催化和燃料电池”专题文章

• 综述 • 上一篇    下一篇

锂-氧气电池:正极催化剂的最新进展与挑战

温波a, 朱卓a, 李福军a,b,*()   

  1. a南开大学化学学院,先进能源材料化学教育部重点实验室,新能源转化与存储交叉科学中心,天津 300071
    b天津物质绿色创造与制造海河实验室,天津 300192
  • 收稿日期:2022-05-24 修回日期:2022-06-08 接受日期:2022-06-22 出版日期:2023-02-28 发布日期:2022-06-24

Advances and Challenges on Cathode Catalysts for Lithium-Oxygen Batteries

Bo Wena, Zhuo Zhua, Fu-Jun Lia,b,*()   

  1. aKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
    bHaihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
  • Received:2022-05-24 Revised:2022-06-08 Accepted:2022-06-22 Published:2023-02-28 Online:2022-06-24
  • Contact: *Tel: (86-22)23509571, E-mail address: fujunli@nankai.edu.cn.

摘要:

非质子锂-氧气电池具有高理论能量密度,在过去几年里受到了广泛关注。然而,动力学缓慢的氧还原反应(ORR)/氧析出反应(OER)和放电产物Li2O2导电性差导致锂-氧气电池过电位大,放电容量有限,循环寿命短。开发有效的锂-氧气电池正极催化剂可以调控放电与充电过程中Li2O2的形成和可逆分解,减小放电/充电极化。尽管提升ORR/OER动力学的正极催化剂已经取得了一系列重要进展,但是对正极在放电和充电中Li2O2生成和分解过程的理解依然是不足的。这篇综述聚焦于锂-氧气电池正极催化剂的最新进展,总结了催化剂与Li2O2生成/分解的作用关系,本文首先指出了锂-氧气电池正极面临的科学问题,包括动力学缓慢的ORR/OER过程和导电性差的反应产物Li2O2钝化电极,并提出了锂-氧气电池正极设计准则。通过对最近报道的正极催化剂进行分类讨论,明晰调控催化剂活性位点策略,理解在正极反应过程中不同催化剂的活性位点对反应中间产物的吸附状态,以及对Li2O2生成和分解的作用机制,评估了不同类型正极催化剂在锂-氧气电池的潜在应用。最后总结了锂-氧气电池正极催化剂依然存在的挑战,例如阐明正极催化剂活性位点与附着的Li2O2界面在充放电过程中的变化,并揭示了设计高效正极催化剂的决定因素,展望了通过光/磁协助、负极保护以及电解液设计等策略,进一步推动锂-氧气电池的应用。

关键词: 非质子锂氧电池, 正极催化剂, 反应动力学, 过电压, Li2O2的形成与分解

Abstract:

Aprotic lithium-oxygen batteries (LOBs) with high theoretical energy density have received considerable attention over the past years. However, the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) at cathodes suffer from slow kinetics for large overvoltages in LOBs. Significant advances on catalysts have been achieved to accelerate cathode kinetics, but understanding on the formation/decomposition processes of Li2O2 is limited. Herein, this review highlights the fundamental understanding of the correlation between catalysts and formation/decomposition of Li2O2. Various types of cathode catalysts are discussed to reveal the mechanism of formation/decomposition of Li2O2, aiming to present the prerequisites for the design of highly efficient cathode catalysts. Future prospects of comprehensive consideration on introduction of light or magnetism, protection of Li metal anode, and electrolyte engineering are presented for the further development of LOBs.

Key words: Aprotic lithium-oxygen batteries, Cathode catalysts, Reaction kinetics, Overvoltage, Formation/decomposition of Li2O2