Please wait a minute...
欢迎访问《电化学(中英文)》期刊官方网站,今天是
图/表 详细信息
水性锌离子电池的无枝晶策略:结构、电解质和隔膜
吴刚, 杨武海, 杨洋, 杨慧军
电化学(中英文)    2024, 30 (12): 2415003-.   DOI:10.61558/2993-074X.3487
摘要   (7 HTML14 PDF(pc) (4073KB)(241)  

能源需求的持续增长和环境污染的加剧构成了亟待解决的主要挑战。开发和利用风能和太阳能等可再生、可持续的清洁能源至关重要。然而,这些间歇性能源的不稳定性使得对储能系统的需求日益迫切。水系锌离子电池(AZIBs)因其独特优势,如高能量密度、成本效益、环保性和安全性,受到广泛关注。然而,AZIBs面临着重大挑战,主要是锌枝晶的形成严重影响了电池的稳定性和寿命,导致电池失效。因此,减少锌枝晶的形成对于提高 AZIBs 的性能至关重要。本综述系统而全面地梳理了当前抑制锌枝晶形成的策略和进展。通过综合分析锌阳极、电解质、隔膜设计和改性以及其他新机制的最新发展,为研究人员提供一个透彻的理解,以指导未来的研究,推动水性锌离子电池技术的发展。



View image in article
Figure 7 (a) Schematic diagram of a Zn symmetric cell with Ti spacer. (b) Comparison of cycle life curves for Zn symmetric cells. Cross-sectional SEM images of zinc electrodeposition on a copper substrate show distinct morphologies under different conditions. Reproduced with the authors’ permission of ref. [14] Copyright 2023, Royal Society of Chemistry. Zinc plating images at (c) low current density and (e) high current density exhibit different structural features. After zinc plating/stripping cycles, the samples reveal (d) the morphology at low current density and (f) the morphology at high current density. Top-sectional SEM images and corresponding elemental mapping further highlight the differences in zinc plating morphology at (g) low current density and (h) high current density. Reproduced with the authors’ permission of ref. [105]. Copyright 2024, Royal Society of Chemistry.
本文的其它图/表