欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

石墨烯量子点增强聚吡咯超级电容器电极的电化学性质(英文)

  • 吴坤 ,
  • 许思哲 ,
  • 周雪皎 ,
  • 吴海霞
展开
  • 上海交通大学微纳科学技术研究院,上海 200240

收稿日期: 2012-08-16

  修回日期: 2012-10-09

  网络出版日期: 2012-10-30

基金资助

This work was supported by the National Natural Science Foundation of China (No. 20906055), National “973 Program” (No. 2010CB933900), and the State Key Laboratory of Bioreactor Engineering (No. 2060204).

Graphene Quantum Dots Enhanced Electrochemical Performance of Polypyrrole as Supercapacitor Electrode

  • WU Kun ,
  • XU Si-Zhe ,
  • ZHOU Xue-Jiao ,
  • WU Hai-Xia
Expand
  • Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2012-08-16

  Revised date: 2012-10-09

  Online published: 2012-10-30

Supported by

This work was supported by the National Natural Science Foundation of China (No. 20906055), National “973 Program” (No. 2010CB933900), and the State Key Laboratory of Bioreactor Engineering (No. 2060204).

摘要

通过将吡咯单体在低温下与石墨烯量子点进行原位聚合,获得一种全新的聚吡咯/石墨烯量子点(PPY/GQD)复合材料. 实验中采用了扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线衍射(XRD)、红外(FT-IR)和热重(TGA)对复合物的表面形貌、结构进行表征. 结果表明,吡咯单体以石墨烯量子点为软模板,以化学键的方式在石墨烯量子点的表面聚合生长成片状聚吡咯. 通过机械冷压法将粉末状PPY/GQD复合物压成圆片电极,电极的电化学测试结果表明,PPY和GQD质量比为50:1所制得的复合物的电容量为485 F·g-1,同时在两千次循环之后电容量只降低了大约2%. 通过与同比例的PG(聚吡咯/石墨烯复合材料)以及纯PPY对比,发现聚吡咯/石墨烯量子点的高比容量及优异的循环稳定性将会使其在电化学超级电容器领域中具有的潜在的应用价值.

本文引用格式

吴坤 , 许思哲 , 周雪皎 , 吴海霞 . 石墨烯量子点增强聚吡咯超级电容器电极的电化学性质(英文)[J]. 电化学, 2013 , 19(4) : 361 -370 . DOI: 10.61558/2993-074X.2122

Abstract

With an objective to develop electrode materials with high specific capacitance and good stability, a completely new nanocomposite of Polypyrrole (PPY) and graphene quantum dots (GQD) was successfully obtained through in-situ polymerization of pyrrole in the presence of GQD suspension. The obtained composites with different mass ratios were characterized by X-Ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). GQD enhanced electrochemical performance of PPY and, as supercapacitor electrodes, the PPY/GQD composites with the mass ratio of PPY to GQD at 50:1 showed a competitive specific capacitance of 485 F·g-1 at a scan rate of 0.005 V·s-1. The attenuation of the specific capacitance is about 2% after 2000 cycles. The high specific capacitance and good stability of the PPY/GQD nanocomposites are promising for applications in electrochemical supercapacitors.

参考文献

[1] Zhang K, Zhang L L, Zhao X S, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J]. Chemistry of Materials, 2010, 22(4): 1392-1401.
[2] Jeong Y U, Manthiram A. Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes[J]. Journal of The Electrochemical Society, 2002, 149(11): A1419-A1422.
[3] Ogihara N, Kawauchi S, Okuda C, et al. Theoretical and experimental analysis of porous electrodes for lithium-ion batteries by electrochemical impedance spectroscopy using a symmetric cell[J]. Journal of The Electrochemical Society, 2012, 159(7): A1034-A1039.
[4] Aravindan V, Chuiling W, Reddy M V, et al. Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors[J]. Phys Chem Chem Phys, 2012, 14(16): 5808-5814.
[5] Lazzari M, Mastragostino M, Pandolfo A G, et al. Role of carbon porosity and ion size in the development of Ionic liquid based supercapacitors[J]. Journal of The Electrochemical Society, 2011, 158(1): A22-A25.
[6] Stenger-Smith J D, Guenthner A, Cash J, et al. Poly(propylenedioxy)thiophene-based supercapacitors operating at low temperatures[J]. Journal of The Electrochemical Society, 2010, 157(3): A298-A304.
[7] Bandhauer T M, Garimella S, Fuller T F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of The Electrochemical Society, 2011, 158(3): R1-R25.
[8] Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1): 11-27.
[9] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004, 104(10): 4245-4269.
[10] Zhang D C, Zhang X, Chen Y, et al. Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors[J]. Journal of Power Sources, 2011, 196(14): 5990-5996.
[11] Lufrano F, Staiti P. Performance improvement of Nafion based solid state electrochemical supercapacitor[J]. Electrochimica Acta, 2004, 49(16): 2683-2689.
[12] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[13] Raymundo-Pin?ero E, Khomenko V, Frackowiak E, et al. Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors[J]. Journal of The Electrochemical Society, 2005, 152(1): A229-A235.
[14] Bose S, Kim N H, Kuila T, et al. Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode[J]. Nanotechnology, 2011, 22(29): 295202-295210.
[15] Vix-Guterl C, Frackowiak E, Jurewicz K, et al. Electrochemical energy storage in ordered porous carbon materials[J]. Carbon, 2005, 43(6): 1293-1302.
[16] Hui Z H, Hong C, Lian L S, et al. The effect of the polyaniline morphology on the performance of polyaniline supercapacitors[J]. Journal of Solid State Electrochemistry, 2005, 9(8): 574-580.
[17] Gupta V, Miura N. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline[J]. Materials Letters, 2006, 60(12): 1466-1469.
[18] Ingrama M D, Staeschea H, Ryderb K S. 'Activated' polypyrrole electrodes for high-power supercapacitor applications[J]. Solid State Ionics, 2004, 169(1/4): 51-57.
[19] Sharma R K, Rastogi A C, Desu S B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor[J]. Electrochemistry Communications, 2008, 10(2): 268-272.
[20] Laforgue A, Simon P, Sarrazin C, et al. Polythiophene-based supercapacitors[J]. Journal of Power Sources, 1999, 80(1/2): 142-148.
[21] Geim A K. Graphene: Status and prospects[J]. Science, 2009, 324(5934): 1530-1534.
[22] Xu S Z, Zhou X J, Wu K, et al. Electrochemical performances of layered polypyrrole/chemically reduced graphene oxide nanocomposites as supercapacitor electrodes[J]. Journal of Electrochemistry, 2012, 18(3): 5-16.
[23] Banhart F, Kotakoski J, Krasheninnikov A V. Structural defects in graphene[J]. ACS Nano, 2010, 5(1): 26-41.
[24] Zhou X, Zhang Y, Wang C, et al. Photo-Fenton reaction of graphene oxide: A new strategy to prepare graphene quantum dots for DNA cleavage[J]. ACS Nano, 2012, 6(8): 6592-6599.
[25] Zhang J L, Yang H J, Shen G X, et al. Reduction of graphene oxide via L-ascorbic acid[J]. Chemical Communications, 2010, 46(7): 1112-1114.
[26] Zhou X J, Zhang J L, Wu H X, et al. Reducing gaphene oide via hdroxylamine: A simple and efficient route to graphene[J]. The Journal of Physical Chemistry C, 2011, 115(24): 11957-11961.
[27] Fan Z, Wang K, Wei T, et al. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder[J]. Carbon, 2010, 48(5): 1686-1689.
[28] Vishnuvardhan T K, Kulkarni V R, Basavaraja C, et al. Synthesis, characterization and a.c. conductivity of polypyrrole/Y2O3 composites[J]. Bulletin of Materials Science, 2006, 29(1): 77-83.
[29] He C, Yang C H, Li Y F. Chemical synthesis of coral-like nanowires and nanowire networks of conducting polypyrrole[J]. Synthetic Metals, 2003, 139(2): 539-545.
[30] Peng J, Gao W, Gupta B K, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Letters, 2012, 12(2): 844-849.
[31] Amarnath C A, Hong C E, Kim N H, et al. Efficient synthesis of graphene sheets using pyrrole as a reducing agent[J]. Carbon, 2011, 49(11): 3497-3502.
[32] Conway B E. Electrochemical supercapacitors: Scientific fundamentals and technological applications[M]. Springer, 1999: 444-445.
[33] Ramasamy R P, Ramadass P, Haran B S, et al. Synthesis, characterization and cycling performance of novel chromium oxide cathode materials for lithium batteries[J]. Journal of Power Sources, 2003, 124(1): 155-162.
[34] Zeng F, Kuang Y, Liu G, et al. Supercapacitors based on high-quality graphene scrolls[J]. Nanoscale, 2012, 4(13): 3997-4001.
文章导航

/