欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

Gd0.2Ce0.8O2包覆LaNi0.6Fe0.4O3-δ阴极制备及性能

  • 任睿轩 ,
  • 黄波 ,
  • 朱新坚 ,
  • 胡一星 ,
  • 丁小益 ,
  • 刘宗尧 ,
  • 刘烨彬
展开
  • 上海交通大学 机械与动力工程学院,燃料电池研究所,上海 200240

收稿日期: 2012-04-24

  修回日期: 2012-06-05

  网络出版日期: 2013-06-28

基金资助

国家自然科学基金(No. 51201098)和教育部高等学校博士学科点专项科研基金(No. 20100073120055)资助

Fabrication and Performance of LaNi0.6Fe0.4O3-δ Cathode Modified by Coating with Gd0.2Ce0.8O2 for Intermediate Temperature Solid Oxide Fuel Cell

  • REN Rui-Xuan ,
  • HUANG Bo ,
  • ZHU Xin-Jian ,
  • HU Yi-Xing ,
  • DING Xiao-Yi ,
  • LIU Zong-Yao ,
  • LIU Ye-Bin
Expand
  • Institute of Fuel Cell, School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China

Received date: 2012-04-24

  Revised date: 2012-06-05

  Online published: 2013-06-28

摘要

应用丝网印刷和共烧结制备LaNi0.6Fe0.4O3-δ/Sc0.1Zr0.9O1.95/LaNi0.6Fe0.4O3-δ对称电池. 以硝酸铈和硝酸钆为原料,柠檬酸作燃料,燃烧合成Gd0.2Ce0.8O2(GDC)包覆的LaNi0.6Fe0.4O3-δ(LNF)阴极. 实验表明,在750 oC工作温度下,纯LaNi0.6Fe0.4O3-δ阴极的极化电阻为0.70 Ω·cm2,而21.3%(by mass,下同,如无特殊标注均为质量分数)GDC包覆的LNF-GDC复合阴极的极化电阻最小(0.13 Ω·cm2),同时活化能最小(136.80 kJ·mol-1),故其阴极性能最佳. GDC的包覆加速了气体/阴极/电解质三相界面反应区的扩散过程,降低了阴极极化电阻.

本文引用格式

任睿轩 , 黄波 , 朱新坚 , 胡一星 , 丁小益 , 刘宗尧 , 刘烨彬 . Gd0.2Ce0.8O2包覆LaNi0.6Fe0.4O3-δ阴极制备及性能[J]. 电化学, 2013 , 19(3) : 275 -280 . DOI: 10.61558/2993-074X.2960

Abstract

The symmetric cell of LaNi0.6Fe0.4O3-δ/Sc0.1Zr0.9O1.95/LaNi0.6Fe0.4O 3-δ was fabricated with screen printing method. A LaNi0.6Fe0.4O3-δ (LNF) cathode was modified by coating with nano-sized gadolinium-doped ceria (GDC, Gd0.2Ce0.8O2) prepared using a simple combustion process within the pores of the cathode. According to the electrochemical impedance spectra (EIS), the polarization resistance of the pure LNF was 0.70 W·cm2 at 750 ºC, while 0.13 W·cm2 for the 21.3% GDC (by mass)-coated LNF cathode at the same temperature, which was only 1/5 of that of the pure LNF cathode. The activation energy of the 21.3% GDC (by mass)-coated LNF cathode (136.80 kJ·mol-1) is the smallest among those of GDC-coated LNF cathodes with different contents of GDC. The 21.3% GDC (by mass)-coated LNF cathode showed the optimum performance. The results indicated that GDC coatings significantly affected electrocatalytic activity of the LNF cathodes towards O2 reduction reaction. The improved performance of GDC-coated LNF cathode was attributed to the extended triple-phase boundary (TPB) and enhanced ion conductivity of oxide.

参考文献

[1] Lv S Q(吕世权), Long G H(龙国徽), Meng X W(孟祥伟), et al. Perovskite cathode for solid oxide fuel cells[J]. Chinese Journal of Power Source(电源技术), 2010, 34(7): 734-737.
[2] Guo Y B(郭友斌), Lu L H(陆丽华), Chu L(储凌), et al. Research Progress in perovskite-like cathode for intermediate temperature solid oxide fuel cells[J]. Bulletin of the Chinese Ceramic Society(硅酸盐通报), 2009, 28(5): 991-996.
[3] Wu L W(邬理伟), Zheng Y P(郑颖平), Sun Y M(孙岳明), et al. Research progress in composite cathode of SOFC[J]. Chinese Battery Industry(电池工业), 2010, 15(1): 53-56.
[4] Kadowaki T, Shiomitsu T, Marsuda E, et al. Applicability of heat resisting alloys to the separator of planar type solid oxide fuel cell. Solid State Ionics, 1993, 67(1/2): 65-69.[J]
[5] Yang Z, Weil K S, Paxton D M, et al. Selection and evaluation of heat-resistant alloys for SOFC interconnect applications[J]. Journal of the Electrochemical Society, 2003, 150(9): A1188-A1201.
[6] Horita T, Xiong Y, Kishimoto H, et al. Application of Fe-Cr alloys to solid oxide fuel cells for cost-reduction: Oxidation behavior of alloys in methane fuel Journal of Power Sources, 2004, 131(1/2): 293-298.[J].
[7] Tucker M C, Kurokawa H, Jacobson C P, et al. A fundamental study of chromium deposition on solid oxide fuel cell cathode materials Journal of Power Sources, 2006, 160(1): 130-138.[J].
[8] Konysheva E, Penkalla H, Wessel E, et al. Chromium poisoning of perovskite cathodes by the ODS alloy Cr5Fe1Y2O3 and the high chromium ferritic steel Crofer22APU[J]. Journal of the Electrochemical Society, 2006, 153(4): A765-A773.
[9] Yokokawa H, Horita T, Sakai N, et al. Thermodynamic considerations on Cr poisoning in SOFC cathodes. Solid State Ionics, 2006, 177(35/36): 3193-3198.[J]
[10] Liu D J, Almer J, Cruse T. Characterization of Cr poisoning in a solid oxide fuel cell cathode using a high energy X-ray microbeam[J]. Journal of the Electrochemical Society, 2010, 157(5): B744-B750.
[11] Horita T, Xiong Y P, Kishimoto H, et al. Chromium poisoning and degradation at (La,Sr)MnO3 and (La,Sr)FeO3 cathodes for solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2010, 157(5): B614-B620.
[12] Chiba R, Yoshimura F, Sakurai Y. An investigation of LaNi1-xFexO3 as a cathode material for solid oxide fuel cells[J]. Solid State Ionics, 1999, 124(3/4): 281-288.
[13] Zhen Y D, Tok A I Y, Jiang S P, et al. La(Ni,Fe)O3 as a cathode material with high tolerance to chromium poisoning for solid oxide fuel cells[J]. Journal of Power Sources, 2007, 170(1): 61-66.
[14] Orui H, Watanabe K, Chiba R, et al. Application of LaNi(Fe)O3 as SOFC Cathode[J].Journal of the Electrochemical Society, 2004, 151(9): A1412-A1417.
[15] Bevilacqua M, Montini T, Tavagnacco C, et al. Preparation, characterization, and electrochemical properties of pure and composite LaNi0.6Fe0.4O3-based cathodes for IT-SOFC[J]. Chemistry of Materials, 2007, 19: 5926-5936.
[16] Hashimoto S I, Kammer K, Larsen P H, et al. A study of Pr0.7Sr0.3Fe1_xNixO3_δ as a cathode material for SOFCs with intermediate operating temperature[J]. Solid State Ionics, 2005, 176:1013-1020.
[17] Stodolny M K, Boukamp B A, Blank D H A, et al. Impact of Cr-poisoning on the conductivity of LaNi0.6Fe0.4O3[J]. Journal of Power Sources, 2011(22), 196: 9290-9298.
[18] Stodolny M K, Boukamp B A, Blank D H A, et al. Cr-poisoning of a LaNi0.6Fe0.4O3 cathode under current load[J]. Journal of Power Sources, 2012, 209: 120-129.
[19] Jain S R, Adiga K C, Vemeker V R P. A new approach to thermochemical calculation of condensed fuel-oxidizer mixtures[J]. Combustion and Flame, 1981, 40(1): 71-76.
[20] Liu H(刘珩),Huang B(黄波),Zhu X J(朱新坚). Preparation and characterization of the LaNi0.6Fe0.4O3-δ cathode for intermediate temperature solid oxide fuel cell[J]. Journal of Electrochemistry(电化学), 2011, 17(4): 421-426.
[21] Huang B, Ye X F, Wang S R, et al. Performance of Ni/ScSZ cermet anode modified by coating with Gd0.2Ce0.8O2 for a SOFC running on methane fuel[J]. Journal of Power Sources, 2006, 162(2): 1172-1181.
[22] Zhou W, Ran R, Shao Z P, et al. Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8 Fe0.2O3-δcathodes prepared via electrodes deposition[J]. Electrochimica Acta, 2008, 53(13): 4370-4380.
[23] Adler S B. Limitations of charge-transfer models for mixed-conducting oxygen electrodes[J]. Solid State Ionics, 2000, 135: 603-612.
[24] Fu C J, Sun K N, Zhang N, et al. Electrochemical characteristics of LSCF-GDC composite cathodes for intermediate temperature SOFC[J]. Electrochimica Acta, 2007, 52(13): 4589-4594.
[25] Qiang F, Sun K N, Zhang N Q, et al. Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy[J]. Journal of Power Sources, 2007, 168: 338-345.
[26] Jiang S P, Leng Y J, Chan S H, et al. Development of(La,Sr)MnO3-based cathodes for intermediate temperature solid oxide fuel cells[J]. Electrochemical and Solid-State Letters, 2003, 6(4): A67-A70.
[27] Li J L, Wang S R, Wang Z R, et al. (La0.74Bi0.10Sr0.16)MnO3-δ-Ce0.8Gd0.2O2-δ cathodes fabricated by ion-impregnating method for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2009, 188(2): 453-457.
文章导航

/