欢迎访问《电化学(中英文)》期刊官方网站,今天是
锂离子和燃料电池近期研究专辑(厦门大学 董全峰教授主编)

丙酸乙酯对LiFePO4锂离子电池低温性能的影响

  • 李小平 ,
  • 郝连升 ,
  • 李伟善 ,
  • 许梦清 ,
  • 邢丽丹
展开
  • 1. 华南师范大学化学与环境学院,广东 广州 510006;2. 东莞市迈科新能源有限公司,广东 东莞 523800

收稿日期: 2012-10-12

  修回日期: 2013-01-06

  网络出版日期: 2013-01-13

基金资助

广东省科技计划攻关项目(No. 2010A010200001)和省部院产学研结合重大专项(No. 2012A090300012)资助

Effect of Ethyl Propionate on Low-Temperature Performance of LiFePO4-Based Li-Ion Battery

  • LI Xiao-Ping ,
  • HAO Lian-Sheng ,
  • LI Wei-Shan ,
  • XU Meng-Qing ,
  • XING Li-Dan
Expand
  • 1. School of Chemistry and Environment, South China Normal University, Guangzhou, Guangdong 510006, China; 2. Mcnair New Power Co., Ltd, Dongguan, Guangdong 523800, China

Received date: 2012-10-12

  Revised date: 2013-01-06

  Online published: 2013-01-13

摘要

以丙酸乙酯(EP)作为碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二甲酯(DMC)的共溶剂,研究其对LiFePO4锂离子电池低温电化学性能的影响. 利用循环伏安曲线、交流阻抗图谱和恒电流充放电曲线等方法测试电池电化学性能. 结果表明,添加一定量EP,可提高碳酸酯电解液的离子电导率,改善电解液与正极LiFePO4材料和负极石墨材料的相容性,从而提高了LiFePO4锂离子电池的低温性能. 使用1 mol·L-1 LiPF6/(EC:EMC:DMC:EP=1:1:1:3, by mass)电解液的石墨/LiFePO4锂离子电池在10 ºC(1C)、-10 ºC(0.2C)、-20 ºC(0.2C)、-30 ºC(0.2C)和-40 ºC(0.2C)下的相对放电容量(以25 ºC时的放电容量为基准)分别为82.9%、75.6%、59.0%、46.4%和37.6%.

本文引用格式

李小平 , 郝连升 , 李伟善 , 许梦清 , 邢丽丹 . 丙酸乙酯对LiFePO4锂离子电池低温性能的影响[J]. 电化学, 2013 , 19(3) : 237 -245 . DOI: 10.61558/2993-074X.2955

Abstract

A linear carboxylic, ester ethyl propionate (EP), was used as the co-solvent of carbonates, ethylene carbonate (EC), ethyl-methyl carbonate (EMC) and dimethyl carbonate (DMC), and its effect on low-temperature performance of LiFePO4-based Li-ion battery was studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge test. The application of EP enhances the ionic conductivity of the electrolyte, improves the compatibility of the electrolyte with both LiFePO4 and graphite materials, and thus improves the low-temperature performance of LiFePO4-based Li-ion battery. The Li-ion battery using the optimized electrolyte of 1 mol·L-1 LiPF6/EC:EMC:DMC:EP (1:1:1:3) shows the capacity retention of 82.9%, 75.6%, 59.0%, 46.4%, and 37.6% of discharge capacity at room temperature when discharged at 10 oC (1C), -10 oC (0.2C), -20 oC (0.2C), -30 oC (0.2C), and -40 oC (0.2C), respectively.

参考文献

[1] Plichta E J, Behl W K. A low-temperature electrolyte for lithium and lithium-ion batteries[J]. Journal of Power Sources, 2000, 88(2): 192-196.
[2] Plichta E J, Hendrickson M, Thompson R, et al. Development of low temperature Li-ion electrolytes for NASA and DOD applications[J]. Journal of Power Sources, 2001, 94(2): 160-162.
[3] Herreyre S, Huchet O, Barusseau S, et al. New Li-ion electrolytes for low temperature applications[J]. Journal of Power Sources, 2001, 97-98: 576-580.
[4] Zhang S S, Xu K, Allen J L, et al. Effect of propylene carbonate on the low temperature performance of Li-ion cells[J]. Journal of Power Sources, 2002, 110(1): 216-221.
[5] Zhang S S, Xu K, Jow T R. Tris (2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries[J]. Journal of Power Sources, 2003, 113(1): 166-172.
[6] Zhang S S, Xu K, Jow T R. Electrochemical impedance study on the low temperature of Li-ion batteries[J]. Electrochimica Acta, 2004, 49(7): 1057-1061.
[7] Zhang S S, Jow T R, Amine K, et al. LiPF6-EC-EMC electrolyte for Li-ion battery[J]. Journal of Power Sources, 2002, 107(1): 18-23.
[8] Blomgern G E. Electrolytes for advanced batteries[J]. Journal of Power Sources, 1999, 81: 112-118.
[9] Kim H. The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries[J]. Journal of Electrochemical Society, 1999, 146(12): 4401-4405.
[10] Levi M D, Aurbach D. Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium[J]. The Journal of Physical Chemistry B, 1997, 101(23): 4630-4640.
[11] Tang K, Yu X Q, Sun J P, et al. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS[J]. Electrochimica Acta, 2011, 56: 4869-4875.
[12] Liao L X, Cheng X Q, Ma Y L, et al. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode[J]. Electrochimica Acta, 2013, 87: 466-472.
[13] Aurbach D, Levi M D, Levi E. Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides[J]. Journal of Electrochemical Society, 1998, 145: 3024-3034.
文章导航

/