欢迎访问《电化学(中英文)》期刊官方网站,今天是
锂离子和燃料电池近期研究专辑(厦门大学 董全峰教授主编)

聚吡咯-过渡金属-氧配合物储锂材料的结构与性能研究

  • 毛亚 ,
  • 孔庆宇 ,
  • 郭炳焜 ,
  • 王兆翔 ,
  • 陈立泉
展开
  • 1. Key Laboratory for Renewable Energy, Chinese Academy of Sciences;Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condense Matter Physics;Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. Société civile Synchrotron SOLEIL L'Orme des Merisiers, Saint-Aubin-BP 48, 91192 GIF-sur-YVETTE CEDEX, France

收稿日期: 2012-10-12

  修回日期: 2012-12-19

  网络出版日期: 2012-12-24

Polypyrrole-Transition Metal-Oxygen Coordination Complexes as High Performance Lithium Storage Material

  • MAO Ya ,
  • KONG Qing-Yu ,
  • GUO Bing-Kun ,
  • WANG Zhao-Xiang ,
  • CHEN Li-Quan
Expand

Received date: 2012-10-12

  Revised date: 2012-12-19

  Online published: 2012-12-24

摘要

目前锂离子电池电极材料主要使用无机材料. 近年来有机物电极材料虽有报道,但这些材料大都比容量低、倍率性能差. 本文介绍一类新型有机金属配合物聚吡咯-过渡金属-氧储锂材料的合成、结构及电化学性能. 结合扩展X-射线吸收精细结构谱分析和密度泛函理论计算,发现这类材料呈现多层结构特征,层内稳定的过渡金属-吡咯N的配位作用及循环过程中层间过渡金属-氧键的可逆断裂和结合使该类材料具有很高的储锂容量和循环稳定性,且聚吡咯导电网络使得该材料具有良好的倍率性能. 这类新材料将有望成为锂离子电池的高比容量负极材料.

本文引用格式

毛亚 , 孔庆宇 , 郭炳焜 , 王兆翔 , 陈立泉 . 聚吡咯-过渡金属-氧配合物储锂材料的结构与性能研究[J]. 电化学, 2013 , 19(3) : 225 -231 . DOI: 10.61558/2993-074X.2953

参考文献

[1] MacDiarmid A G, Yang L S, Huang W S, et al. Polyaniline: Electrochemistry and application to rechargeable batterie [J]. Synthetic Metals, 1987, 18(1/3): 393-398.
[2] Novak P, Muller K, Santhanam K S V, et al. Electrochemically active polymers for rechargeable batteries[J]. Chemical Reviews, 1997, 97(1): 207-282.
[3] Chen H, Armand M, Demailly G, et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries[J]. ChemSusChem, 2008, 1(4): 348-355.
[4] Armand M, Tarascon J. M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[5] Armand M, Grugeon S, Vezin H, et al. Conjugated dicarboxylate anodes for Li-ion batteries[J]. Nature Materials, 2009, 8(2):120-125.
[6] Huang Y H, Goodenough J B. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers[J]. Chemistry of Materials, 2008, 20(23):7237-7241.
[7] Yuan L, Wang J, Chew S Y, et al. Synthesis and characterization of SnO2-polypyrrole composite for lithium-ion battery[J]. Journal of Power Sources, 2007, 174(2):1183-1187.
[8] Guo Z P, Wang J Z, Liu H K, et al. Study of silicon/polypyrrole composite as anode materials for Li-ion batteries[J]. Journal of Power Sources, 2005, 146(1/2): 448-451.

[9] Levi M D, Gofer Y, Aurbach D. A synopsis of recent attempts toward construction of rechargeable batteries utilizing conducting polymers cathodes and anodes[J]. Polymers for Advanced Technologies, 2002, 13(10/12):697-713.

[10] Yuasa M, Yamaguchi A, Itsuki H, et al. Modifying carbon particles with polypyrrole for adsorption of cobalt ions as electrocatatytic site for oxygen reduction[J]. Chemistry of Materials, 2005, 17(17): 4278-4281.

[11] Bashyam R, Zelenay P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature, 2006, 443(7107): 63-66.
文章导航

/