欢迎访问《电化学(中英文)》期刊官方网站,今天是
锂离子和燃料电池近期研究专辑(厦门大学 董全峰教授主编)

前驱体对三元正极材料LiNi0.5Co0.2Mn0.3O2性能的影响

  • 胡东阁 ,
  • 王张志 ,
  • 刘佳丽 ,
  • 黄桃 ,
  • 余爱水
展开
  • 1. Hangzhou Golden Horse Energy Tecnology Co., Ltd., Hangzhou 311215, China; 2. Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai 200433, China

收稿日期: 2012-10-12

  修回日期: 2012-12-25

  网络出版日期: 2012-12-30

The Effect of Precursors on Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Material

  • HU Dong-Ge ,
  • WANG Zhang-Zhi ,
  • LIU Jia-Li ,
  • HUANG Tao ,
  • YU Ai-Shui
Expand
  • 1. Hangzhou Golden Horse Energy Tecnology Co., Ltd., Hangzhou 311215, China; 2. Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai 200433, China

Received date: 2012-10-12

  Revised date: 2012-12-25

  Online published: 2012-12-30

摘要

目前,工业产品的三元正极材料LiNi0.5Co0.2Mn0.3O2通常使用间接共沉淀和高温固相烧结相结合的方法. 共沉淀制得的氢氧化镍钴锰前驱体,其形貌和粒径分布等直接影响着三元材料LiNi0.5Co0.2Mn0.3O2的性能. 使用X射线衍射(XRD)、扫描电镜(SEM)表征和观察材料晶体结构和表面形貌,并测试粒径分布、振实密度和电化学性能,考察三种前驱体对制得的三元材料的影响. 研究结果表明,前驱体的粒径分布直接影响材料的物理性能,表面有大量微孔而又致密的球形是较理想的前驱体形貌;焙烧后可得到结晶度高的材料,0.2C全电池放电比容量达到156.4 mAh·g-1,循环寿命优异,300周期循环其容量基本不衰减,500周期循环后容量保持率高达92%.

本文引用格式

胡东阁 , 王张志 , 刘佳丽 , 黄桃 , 余爱水 . 前驱体对三元正极材料LiNi0.5Co0.2Mn0.3O2性能的影响[J]. 电化学, 2013 , 19(3) : 204 -209 . DOI: 10.61558/2993-074X.2950

Abstract

Commercial LiNi0.5Co0.2Mn0.3O2 material is generally prepared by a combination of co-precipitation and solid state reaction method. The particle size distribution and morphology of Ni0.5Co0.2Mn0.3(OH)2 precursor have a great impact on the electrochemical performance of LiNi0.5Co0.2Mn0.3O2. In this work, the crystal structure and surface morphology of LiNi0.5Co0.2Mn0.3O2 prepared by three different precursors were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Particle size distribution, tap density and electrochemical performance were investigated. The results show that the particle size distribution of every precursor has most direct impact on properties of the corresponding LiNi0.5Co0.2Mn0.3O2. The precursor with micropores on surface results in the best electrochemical performance. The discharge capacity for full cell test was 156.4 mAh·g-1 (0.2C), meanwhile, the cycling performance is excellent. The capacity fading was limited in the first 300 cycles with up to 92% capacity retention after 500 cycles.

参考文献

[1] Guo B K(郭炳坤), Xu H(徐辉), Wang X Y(王先友), et al. Lithium ion battery(锂离子电池)[M]. Changsha: Central South University Press(中南大学出版社), 2002: 17-38.
[2] Xu J Q,Thomas H R ,Francis R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries[J]. Journal of Power Sources, 2008, 177(2): 512-527.
[3] Liu Z L, Yu A S, Lee J Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries[J]. Journal of Power Sources, 1999, 81: 416-419.
[4] Hu C Y,Guo J, Du Y, et al. Effects of synthesis conditions on layered Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode via hydroxide co-precipitation method for lithium-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1): 114-120.
[5] Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries[J]. Chemistry Letters, 2001, 30(7): 642-643.
[6] Belharouak I, Sun Y K, Liu J, et al. Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications[J]. Journal of Power Sources, 2003, 123(2): 247-252.
[7] Liang Y G, Han X Y, Zhou X W, et al. Significant improved electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 cathode on volumetric energy density and cycling stability at high rate[J]. Electrochemistry Communications, 2007, 9(5): 965-970.
[8] Park S H, Yoon C S, Kang S G, et al. Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method[J]. Electrochimica Acta, 2004, 49(4): 557-563.
[9] Deng C, Liu L, Zhou W, et al. Effect of synthesis condition on the structure and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by hydroxide co-precipitation method[J]. Electrochimica Acta, 2008, 53(5): 2441-2447.
[10] Yang S Y, Wang X Y, Liu Z L, et al. Influence of pretreatment process on structure, morphology and electrochemical properties of Li[Ni1/3Co1/3Mn1/3]O2 cathode material[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(9): 1995-2001.
[11] Li L J, Li X H, Wang Z X, et al. A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery[J]. Powder Technology, 2011, 206(3): 353-357.
[12] Zhang S, Deng C, Fu B L, et al. Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method[J]. Powder Technology, 2010, 198(3): 373-380.
[13] Kageyama M, Li, D, Kobayakawa K, et al. Structural and electrochemical properties of LiNi1/3Mn1/3Co1/3O2-xFx prepared by solid state reaction[J]. Journal of Power Sources, 2006, 157(1): 494-500.
[14] Chang Z R, Chen Z J, Wu F, et al. Synthesis and characterization of high-density non-spherical Li(Ni1/3Co1/3Mn1/3)O2 cathode material for lithium ion batteries by two-step drying method[J]. Electrochimica Acta, 2008, 53(20): 5927-5933.
文章导航

/