欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

CuF2/MoO3/C复合正极的电化学阻抗谱研究

  • 史月丽 ,
  • 吴楠 ,
  • 沈明芳 ,
  • 董佳群 ,
  • 庄全超 ,
  • 江利
展开
  • 中国矿业大学材料科学与工程学院锂离子电池实验室,江苏 徐州 221116

收稿日期: 2012-07-16

  修回日期: 2012-08-30

  网络出版日期: 2012-09-10

基金资助

2012年中国矿业大学高水平论文专项基金(No. 2012LWB13)资助

An Electrochemical Impedance Spectroscopic Study of CuF2/MoO3/C Cathode Composites

  • SHI Yue-Li ,
  • WU Nan ,
  • SHEN Ming-Fang ,
  • DONG Jia-Qun ,
  • ZHUANG Quan-Chao ,
  • JIANG Li
Expand
  • School of Materials Science and Engineering, China University of Mining & Technology, Xuzhou 221166, Jiangsu, China

Received date: 2012-07-16

  Revised date: 2012-08-30

  Online published: 2012-09-10

摘要

采用球磨方法制备了CuF2/MoO3/C复合材料电极,利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒流充放电、循环伏安(CV)和电化学阻抗谱(EIS)等方法表征与观察复合材料的结构与形貌,测试了电极的电化学性能. 结果表明,球磨CuF2和MoO3晶粒的尺寸为200 ~ 300 nm. CuF2/MoO3/C复合电极10 mA?g-1电流密度首次放电容量为647 mAh.g-1,但随之复合材料循环寿命迅速衰减.循环伏安曲线首次放电,2.2 V左右出现了一个还原峰,第2、3周期该还原峰电位升至3.2 V左右. CuF2/MoO3/C复合电极的Nyquist图由高、中频区两个半圆串接和一条斜线组成. 放电过程,高频区半圆相应于锂离子扩散多层SEI膜,还与电极材料与集流体的接触有关. 中频区半圆与CuF2和MoO3及C的肖特基接触有关. 低频区斜线反映扩散传递过程. CuF2/MoO3/C电极电荷传递阻力较大,这可能也是CuF2/MoO3/C电极容量较快衰减的原因.

本文引用格式

史月丽 , 吴楠 , 沈明芳 , 董佳群 , 庄全超 , 江利 . CuF2/MoO3/C复合正极的电化学阻抗谱研究[J]. 电化学, 2013 , 19(2) : 155 -163 . DOI: 10.61558/2993-074X.2108

Abstract

Composite electrode of CuF2/MoO3/C was fabricated through high energy mechanical milling. The properties of CuF2/MoO3/C were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (TEM), galvanostatic charge-discharge measurements, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that the grain sizes of CuF2 and MoO3 after milling were 200 ~ 300 nm, and the initial discharge capacity of CuF2/MoO3/C was 647 mAh?g-1 at room temperature and at a current density of 10 mA.g-1. However, the capacity decayed rapidly in the next cycles. CV curves showed one reduction peak at 2.2 V in the first cycle and another one at 3.2 V in the following cycles. The Nyquist diagram of CuF2/MoO3/C electrode consisted of two semicircles and one line. During the discharge process, the high frequency semicircle (HFS) may be associated with not only the Li+ migration through the SEI film, but also contact resistance between the CuF2/MoO3/C composites and the current collector. The middle frequency semicircle (MFS) should be related to the Schottky contact between CuF2 and conductive agents, which may be the important feature of such composites materials with big band gap. Besides the low frequency line may be related to the diffusion step. A very large value of charge transfer resistance for the CuF2/MoO3/C electrode may induce the rapid decay in capacity.

参考文献

[1] Yamakawa N, Jiang M, Key B, et al. Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: A solid-state NMR, X-ray diffraction, and pair distribution function analysis study[J]. Journal of the American Chemical Society, 2009, 131(30):10525-10536.
[2] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3), 587-603.
[3] Bervas M, Badway F, Amatucci G G, et al. Bismuth fluoride nanocomposite as a positive electrode material for rechargeable lithium batteries[J]. Electrochemical and Solid-State Letters, 2005, 8(4): A179-A183.
[4] Kim H, Seo D H, Kim H, et al. Multicomponent effects on the crystal structures and electrochemical properties of spinel-structured M3O4 (M = Fe, Mn, Co) anodes in lithium rechargeable batteries[J]. Chemistry of Materials, 2012, 24(4): 720-725.
[5] Poizot P, Laruelle S, Grugeon S, et al. Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li[J]. Journal of the Electrochemical Society, 2002, 149(9): A1212-A1217.
[6] Shu J, Shui M, Huang F T, et al. A new look at lithium cobalt oxide in a broad voltage range for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(7): 3323-3328.
[7] Xiao J, Choi D, Cosimbescu L, et al. Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries[J]. Chemistry of Materials, 2010, 22(16): 4522-4524.
[8] Badway F, Pereira N, Cosandey F, et al. Carbon-metal fluoride nanocomposites structure and electrochemistry of FeF3 :C[J]. Journal of The Electrochemical Society, 2003, 150(9): A1209-A1218.
[9] Li T, Li L, Cao Y L, et al. Reversible three-electron redox behaviors of FeF3 nanocrystals as high-capacity cathode-active materials for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(7): 3190-3195.
[10] Liu P, Vajo J J, Wang J S, et al. Thermodynamics and kinetics of the Li/FeF3 reaction by electrochemical analysis[J]. The Journal of Physical Chemistry C, 2012, 116(10): 6467?6473.
[11] Liu L, Zhou M, Wang X Y, et al. Synthesis and electrochemical performance of spherical FeF3/ACMB composite as cathode material for lithium-ion batteries[J]. Journal of Materials Science, 2012, 47(4): 1819-1824.
[12] Mansour A N, Badway F, Yoon W S, et al. In situ X-ray absorption spectroscopic investigation of the electrochemical conversion reactions of CuF2-MoO3 nanocomposite[J]. Journal of Solid State Chemistry, 2010, 183(12): 3029-3038.
[13] Cui Y H, Xue M Z, Zhou Y N, et al. The investigation on electrochemical reaction mechanism of CuF2 thin film with lithium[J]. Electrochimica Acta, 2011, 56(5): 2328-2335.
[14] Badway F, Mansour A N, Pereira N, et al. Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices[J]. Chemistry of Materials, 2007, 19(17): 4129-4141.
[15] Chernova N A, Roppolo M, Dillon A C, et al. Layered vanadium and molybdenum oxides: Batteries and electrochromics[J]. Journal of Materials Science, 2009, 19(17): 2526-2552.
[16] Kumagai N, Kumagai N, Tanno K. Electrochemical characteristics and structural changes of molybdenum trioxide hydrates as cathode materials for lithium batteries[J]. Journal of Applied Electrochemistry, 1988, 18(6): 857-862.
[17] Jean-Marcel A, Joze M, Stane P, et al. On the interpretation of measured impedance spectra of insertion cathodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2010, 157(11): A1218-A1228.
[18] Yamakawa N, Jiang M, Grey C P, et al. Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-state NMR Spectroscopy and X-ray Diffraction[J]. Chemistry of Materials, 2009, 21(14): 3162-3176.
[19] Sze S M. Physics of semiconductor devices[M]. 2nd ed. New Jersey: Wiley, 1981.
[20] Shi Y L, Shen M F, Xu S D, et al. Electrochemical impedance spectroscopic study of the electronic and ionic transport properties of NiF2/C composites[J]. International Journal of Electrochemical Science, 2011, 6(8): 3399-3415
[21] Ostrovskii D, Ronci F, Scrosati B, et al. Reactivity of lithium battery electrode materials toward non-aqueous electrolytes: Spontaneous reactions at the electrode-electrolyte interface investigated by FTIR[J]. Journal of Power Sources, 2001, 103(1): 10-17.
[22] Chang Y C, Sohn H J. Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons[J]. Journal of the Electrochemical Society, 2000, 147(1): 50-58.
[23] Gmitter A J, Badway F, Rangan S, et al. Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites[J]. Journal of Materials Science, 2010, 20(20): 4149-4161.
[24] Hu J, Li H, Huang X J. Cr2O3-based anode materials for Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2005, 8(1): A66-A69.
[25] Hu J, Li H, Huang X J, et al. Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries[J]. Solid State Ionics, 2006, 177(26/32): 2791-2799.
[26] Wang F, Robert R, Chernova N A, et al. Conversion reaction mechanisms in lithium ion batteries: Study of the binary metal fluoride electrodes[J]. Journal of the American Chemical Society, 2011, 133(46):18828-18836.
文章导航

/