欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

超薄纳米多孔金膜的制备及其局域表面等离子体效应研究

展开
  • 中南大学化学化工学院,湖南 长沙 410083

收稿日期: 2012-03-21

  修回日期: 2012-04-17

  网络出版日期: 2012-04-27

基金资助

湖南省杰出青年基金(No. 09JJ1002)资助

Fabrication and Localized Surface Plasmon Resonance of Ultrathin Nanoporous Gold Films

Expand
  • Department of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

Received date: 2012-03-21

  Revised date: 2012-04-17

  Online published: 2012-04-27

摘要

采用电化学去合金法制得50 nm的超薄纳米多孔金膜(Nanoporous Gold Film,NPGF),其表面粗糙度可预估NPGF的表面形貌. SEM表征证实,在扫描下限大于-0.1 V时,控制伏安扫描的循环周数可获得不同粗糙度的NPGF. 利用反射紫外可见光谱研究了NPGF的局域表面等离子体效应(LSPR). 结果显示,NPGF在450 nm处的LSPR效应受其表面粗糙度影响,在优化的粗糙度下,NPGF的局域表面等离子体效应可实现乙二醇溶液浓度的定量检测.

本文引用格式

冯时, 陈述, 杨青, 向娟 . 超薄纳米多孔金膜的制备及其局域表面等离子体效应研究[J]. 电化学, 2013 , 19(2) : 151 -154 . DOI: 10.61558/2993-074X.2107

Abstract

Ultrathin nanoporous gold films (NPGF) with a thickness of approximately 50 nm were fabricated via electrochemical dealloy method. The morphology of NPGF was evaluated with a parameter of surface roughness. SEM results demonstrate that the fabrication of NPGF with different roughness factors can be achieved by controlling the circles of cyclic voltammetry. UV-Vis spectra indicate that the localized surface plasmon resonance (LSPR) of NPGF is affected by the roughness of NPGF. With the optimal roughness factor, NPGF displays a linear relationship between the ethanediol concentration and the absorbance intensity at λ = 450 nm. The LSPR effect of NPGF presents potential applications in quantitative detection of solution concentration.

参考文献

[1] Liang Z, Susha A, Caruso F. Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof[J]. Chemistry of Materials, 2003, 15(16): 3176-3183.
[2] Erlebacher J. An atomistic description of dealloying[J]. Journal of Electrochemical Society, 2004, 151: 614-626.
[3] Senior N A, Newman R C. Synthesis of tough nanoporous metals by controlled electrolytic dealloying [J]. Nanotechnology, 2006, 17: 2311-2316.
[4] Jia F, Yu C, Ai Z, et al. Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity[J]. Chemistry of Materials, 2007, 19(15): 3648-3653.
[5] Dong H, Cao X. Nanoporous gold thin film: Fabrication, structure evolution, and electrocatalytic activity[J]. Journal of Physical Chemistry C, 2008, 113(2): 603-609.
[6] Yu F, Ahl S, Caminade A M, et al. Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes[J]. Analytical Chemistry, 2006, 78(20): 7346-7350.
[7] Ahl S, Cameron P J, Liu J, et al. A comparative plasmonic study of nanoporous and evaporated gold films[J]. Plasmonics, 2008, 3(1): 13-20.
[8] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment[J]. Journal of Physical Chemistry C, 2003, 107(3): 668-677.
[9] Haes A J, Zou S, Schatz G C, et al. A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles[J]. Journal of Physical Chemistry B, 2004, 108(1): 109-116.
[10] Mayer K M, Hafner J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 2011, 111(6): 3828-3857.
[11] Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors[J].Nature Materials, 2008, 7(6): 442-453.
[12] Haes A J, Hall W P, Chang L, et al. A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease[J]. Nano Letters, 2004, 4(6): 1029-1034.
[13] Stuart D, Haes A, Yonzon C, et al. Biological applications of localised surface plasmonic phenomenae[J]. Nanobiotechnology, 2005, 152(1): 13-32.
文章导航

/