欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

生物电化学仪器的发展现状与展望

  • 胡仁 ,
  • 朴春晖 ,
  • 林昌健 ,
  • 詹东平 ,
  • 任斌 ,
  • Christian AMATORE ,
  • 田中群
展开
  • 1. 厦门大学 化学化工学院,固体表面物理化学国家重点实验室,XiamENS中法联合实验室,福建 厦门 361005; 2. 法国巴黎高等师范学校化学系,法国 巴黎 75231

收稿日期: 2012-03-19

  修回日期: 2012-05-08

  网络出版日期: 2012-05-18

基金资助

国家重点基础研究发展计划资助项目(2007CB935603)、国家自然科学基金-重大国际合作研究资助项目(20620130427)以及科技部-国际科技合作资助项目(2007DFC40440)资助

Current Statuses and Prospects of Bioeletrochemical Instruments

  • HU Ren ,
  • PU Chun-Hui ,
  • LIN Chang-Jian ,
  • ZHAN Dong-Ping ,
  • REN Bin ,
  • Christian AMATORE ,
  • TIAN Zhong-Qun
Expand
  • 1. State Key Laboratory of Physical Chemistry of Solid Surfaces, CNRS LIA XiamENS and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China;
    2. Ecole Normale Supérieure, Département de Chimie, Paris 75231, France

Received date: 2012-03-19

  Revised date: 2012-05-08

  Online published: 2012-05-18

摘要

电荷传递是生命运动的基本过程之一,电化学方法在生命科学中的应用为相关生命现象的研究提供了一个有效而独特的物理化学视角,并带来超出常规生物学检测的丰富信息.随着生物电化学研究的不断扩展和深化,已从早期的生物分子电化学研究深入向活体、活细胞、单活细胞水平甚至活细胞中单生物分子水平发展,研究者对仪器设备性能如灵敏度、分辨率(时间分辨、空间分辨和能量分辨)和操作性等提出了越来越高的要求.本文综述了生物电化学仪器在应用领域和研究领域的现状,重点介绍单细胞电化学检测系统的构建,并初步探讨国内生物电化学研究仪器的发展趋势.

本文引用格式

胡仁 , 朴春晖 , 林昌健 , 詹东平 , 任斌 , Christian AMATORE , 田中群 . 生物电化学仪器的发展现状与展望[J]. 电化学, 2013 , 19(2) : 97 -102 . DOI: 10.61558/2993-074X.2103

Abstract

Charge transfer is one of the essential life processes. In the past decades, the electrochemical methods have been developed to study life science in a unique physicochemical view and have exhibited abundant and precious information beyond conventional biological techniques. As bioelectrochemical research areas evolved from the fundamental studies of biomolecules’ electrochemical behaviours in non-living conditions to the living cells in intro and in vivo, and further to the single molecule in living systems, the role of instruments becomes more and more crucial. The performances of instruments such as sensitivity, resolution (time, spatial and eneygy resolutions) and controllability are more demanding in the living conditions and at small size. In this review, the current statuses of the bioelectrochemical instruments, especially those for electrochemical studies at single living cell level, are presented; and the prospects of the domestic bioelectrochemical instruments are discussed.

参考文献

[1]Bockris J O M, Reddy A K N. Modern electrochemistry 2b: Electrodics in chemistry, engineering, biology and environmental science[M]. New York: Kluwer Academic/Plenum Publishers, 1998.
[2]Bianco P. The origin of bioelectrochemistry: An overview [M] // Bard A J, Stratmann M, Wilson G S (ed). Encyclopedia of electrochemistry, Volume 9: Bioelectrochemistry. Weinheim: Wiley-VCH. 2002.
[3]He P A, Xu Y, Fang Y Z. A review: Electrochemical DNA biosensors for sequence recognition [J]. Analytical Letters, 2005, 38(15): 2597-2623.
[4]Arpaia P, Clemente F, Romanucci C. An instrument for prosthesis osseointegration assessment by electrochemical impedance spectrum measurement[J]. Measurement, 2008, 41(9): 1040-1044.
[5]Hart J P, Crew A, Crouch E, et al. Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses [J]. Analytical Letters, 2004, 37(5): 789-830.
[6]Rosenbaum M, He Z, Angenent L T. Light energy to bioelectricity: Photosynthetic microbial fuel cells[J]. Current Opinion in Biotechnology, 2010, 21(3): 259-264.
[7]Pingarron J M, Yanez-Sedeno P, Gonzalez-Cortes A. Gold nanoparticle-based electrochemical biosensors[J]. Electrochimica Acta, 2008, 53(19): 5848-5866.
[8]Wang J. Carbon-nanotube based electrochemical biosensors: A review[J]. Electroanalysis, 2005, 17(1): 7-14.
[9]Ding L, Du D, Zhang X J, et al. Trends in cell-based electrochemical biosensors[J]. Current Medicinal Chemistry, 2008,15(30): 3160-3170.
[10]Bartlett P N. Bioelectrochemistry: Fundamentals, experimental techniques and applications[M]. Hoboken, NJ: John Wiley & Sons. 2008.
[11]Newman A. Product review: What's current in potentiostats[J]. Analytical Chemistry, 1997, 69(11): 369A-372A.
Smith J, Hinson-Smith V. Product review: The potentiostat: Electrochemistry's utility player [J]. Analytical Chemistry, 2002,74(19): 539A-541A.
[12]Chen C G, Liu Y P, Wu S G. The development of electrochemical analysis and measurement system in domestics[J]. Modern Scientific Instruments (现代科学仪器), 2004, 3: 8-11.
[13]Gu W W, Zhao Y. Cellular electrical impedance spectroscopy: An emerging technology of microscale biosensors[J]. Expert Review of Medical Devices, 2010,7(6): 767-779.
[14]Hong J, Kandasamy K, Marimuthu M, et al. Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study [J]. Analyst, 2011,136(2):237-245.
[15]Kandasamy K, Choi C S, Kim S. An efficient analysis of nanomaterial cytotoxicity based on bioimpedance[J]. Nanotechnology, 2010, 21(37): 375501.
[16]Johnstone A F M, Gross G W, Weiss D G, et al. Microelectrode arrays: A physiologically based neurotoxicity testing platform for the 21st century[J]. Neurotoxicology, 2010, 31(4): 331-350.
[17]Huang C W, Hsieh Y J, Tsai J J, et al. Effects of lamotrigine on field potentials, propagation, and long-term potentiation in rat prefrontal cortex in multi-electrode recording[J]. Journal of Neuroscience Research, 2006, 83(6): 1141-1150.
[18]Charvet G, Rousseau L, Billoint O, et al. BiomeaTM: A versatile high-density 3D microelectrode array system using integrated electronics[J]. Biosensors & Bioelectronics, 2010, 25(8): 1889-1896.
[19]Ye X S, Wang P, Liu J, et al. A portable telemetry system for brain stimulation and neuronal activity recording in freely behaving small animals [J]. Journal of Neuroscience Methods, 2008, 174(2): 186-193.
[20]Jones I L, Livi P, Lewandowska M K, et al. The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics[J]. Analytical and Bioanalytical Chemistry, 2011, 399(7): 2313-2329.
[21]Stett A, Egert U, Guenther E, et al. Biological application of microelectrode arrays in drug discovery and basic research[J]. Analytical and Bioanalytical Chemistry, 2003, 377(3): 486-495.
[22]Amatore C, Arbault S, Guille M, et al. Electrochemical monitoring of single cell secretion: Vesicular exocytosis and oxidative stress[J]. Chemical Reviews, 2008, 108(7): 2585-2621.
[23]Sun P, Laforge F O, Abeyweera T P, et al. Nanoelectrochemistry of mammalian cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(2): 443-448.
[24]Schulte A, Schuhmann W. Single-cell microelectrochemistry[J]. Angew Chem-Int Edit, 2007, 46(46): 8760-8777.
[25]Leszczyszyn D J, Jankowski J A, Viveros O H, et al. Nicotinic receptor-mediated catecholamine secretion from individual chromaffin cells[J]. The Journal of Biological Chemistry, 1990, 265(25): 14736-14737.
[26]Finnegan J M, Pihel K, Cahill P S, et al. Vesicular quantal size measured by amperometry at chromaffin, mast, pheochromocytoma, and pancreatic[J]. Journal of Neurochemistry, 1996, 66(5): 1914-1923.
[27]Westerink R H S, Ewing A G. The pc12 cell as model for neurosecretion[J]. Acta Physiol, 2008, 192(2): 273-285.
[28]Segura F, Brioso M A, Gomez J F, et al. Automatic analysis for amperometrical recordings of exocytosis[J]. Journal of Neuroscience Methods, 2000, 103(2): 151-156.
[29]Gomez J F, Brioso M A, Machado J D, et al. New approaches for analysis of amperometrical recordings [M]//Oconnor D T, Eiden L E (ed). Chromaffin cell: Trnsmitter biosynthesis, storage, release, actions, and informatics. New York: New York Acad Sciences, 2002: 647-654.
[30]Wang W, Foley K, Shan X, et al. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy[J]. Nature Chemistry, 2011, 3(3): 249-255.
[31]Keithley R B, Takmakov P, Bucher E S, et al. Higher sensitivity dopamine measurements with faster-scan cyclic voltammetry[J]. Analytical Chemistry, 2011, 83(9): 3563-3571.
文章导航

/