采用离子交换-电沉积的方法(Ion-exchange/electrodeposition,IEE)制备了一种高Pt利用率催化电极,对所制备电极的表面形貌、催化活性及单电池性能用线性扫描伏安(LSV)、扫描电镜(SEM)、透射电镜(TEM)和单电池测试进行了表征. 结果表明,通过电极制备工艺和离子交换-电沉积参数的调控,能够消除碳载体表面官能团的影响,使铂阳离子只与全氟磺酸树脂(Nafion)上的H+进行交换. 在无铂离子的电解质中,将被交换的铂阳离子还原到与Nafion接触的碳载体上,使每一个铂纳米粒子都处于气体多孔电极的三相界面上,有效地调控铂纳米粒子的尺寸和分散度. 单电池测试表明,以铂载量为0.014 mgPt•cm-2的IEE电极组装的电池的输出功率与铂载量为0.3 mgPt•cm-2的Nafion粘接Pt/C电极相当.
We report a novel method based on ion-exchange/electrodeposition (IEE) for constructing high Pt utilization porous electrodes. The electrode prepared using IEE was assessed by linear sweep voltammetry (LSV), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and single cell test. The preliminary results show that the undesired ion-exchange between Pt anion and surface functional group in carbon black can be eliminated through the electrode preparation process, and every Pt particle prepared by IEE is expected to be deposited on the three-phase reaction zone and thus can be fully utilized in fuel cell reactions. The Pt particle size, shape and distribution obtained by IEE can be controlled by modulating the IEE technique and cycles. The power output of the MEA employing a Pt/C electrode prepared by IEE with a Pt loading of 0.014 mgPt•cm-2 is equivalent to that employing a conventional Nafion-bonded Pt/C electrode with a Pt loading of 0.3 mgPt•cm-2.
[1] Maruyama J, Abe I. Structure control of a carbon-based noble-metal-free fuel cell cathode catalyst leading to high power output[J]. Chemical Communications, 2007, 27: 2879-2881.
[2] Wen Z H, Liu J, Li J H. Core/Shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells[J]. Advanced Materials, 2008, 20(4): 743-747.
[3] Wen Z H, Wang Q, Li J H. Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts[J]. Advanced Functional Materials, 2008, 18(6): 959-964.
[4] Gamburzev S, Appleby A J. Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC)[J]. Journal of Power Sources, 2002, 107(1): 5-12.
[5] Passalacqua E, Lufrano F, Squadrito G, et al. Nafion content in the catalyst layer of polymer electrolyte fuel cells: Effects on structure and performance[J]. Electrochimica Acta, 2001, 46(6): 799-805.
[6] Wei Z D, Ran H B, Liu X A, et al. Numerical analysis of Pt utilization in PEMFC catalyst layer using random cluster model[J]. Electrochimica Acta, 2006, 51(15): 3091-3096.
[7] Ioselevich A, Komyshev A, Lehnert W. Phase segregation of LixMn2O4 (0.6<1) in non-equilibrium reduction processes[J]. Solid State Ionics, 130(3/4): 221-228.
[8] Kim H S, Subramanian N P, Popov B N. Preparation of PEM fuel cell electrodes using pulse electrodeposition[J]. Journal of Power Sources, 2004, 138(1/2): 14-24.
[9] Ye F, Chen L, Li J J, et al. Shape-controlled fabrication of platinum electrocatalyst by pulse electrodeposition[J]. Electrochemistry Communications, 2008, 10(3): 476-479.
[10] Wei Z D, Chen S G, Liu Y, et al. Electrodepositing Pt by modulated pulse current on a nafion-bonded carbon substrate as an electrode for PEMFC[J]. Journal of Physical Chemistry C, 2007, 111(42): 15456-15463.
[11] Talor E J, Anderson E B, Vilambi N R K. Preparation of high-platinum-utilization gas diffusion electrodes for proton exchange-membrane fuel cells[J]. Journal of the Electrochemical Society, 1992, 139(5): L45-L46.
[12] Xi J Y, Wang J S, Yu L H, et al. Facile approach to enhance the Pt utilization and CO-tolerance of Pt/C catalysts by physically mixing with transition-metal oxide nanoparticles[J]. Chemical Communications, 2007, 16: 1656-1658.
[13] Tang J M, Jensen K, Waje M, et al. High performance hydrogen fuel cells with ultralow Pt loading carbon nanotube thin film catalysts[J]. Journal of Physical Chemistry C, 2007, 111(48): 17901-17904.
[14] Xiao W, Jin X B, Deng Y, et al. Three-phase interlines electrochemically driven into insulator compounds: A penetration model and its verification by electroreduction of solid AgCl[J]. Chemistry-A European Journal, 2007, 13(2): 604-612.
[15] Chen S G, Wei Z D, Li H, et al. High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition[J]. Chemical Communications, 2010, 46: 8782-8784.
[16] Lee J S, Seo J S, Han K K, Kim H S. Preparation of low Pt loading electrodes on Nafion (Na+)-bonded carbon layer with galvanostatic pulses for PEMFC application[J]. Journal of Power Sources, 2006, 163(1): 349-356
[17] 刘勇(Liu Y), 魏子栋(Wei Z D), 陈四国(Chen S G), et al. PEMFC electrodes platinized by modulated pulse current electrodeposition[J]. Acta Physico-Chimica Sinica(物理化学学报), 2007, 23(4): 521-525.
[18] Thompson S D, Jordan L R, Forsyth M. Platinum electrodeposition for polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2001, 46(10/11): 1657-1663.
[19] Shao Y Y, Yin G P, Wang J J, et al. Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction[J]. Journal of Power Sources, 2006, 161(1): 47-53.
[20] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735.