具有高导电性和独特电学性质的金属有机络合物AgTCNQ是一种重要的电荷转移盐.本文采用琼脂作为胶凝剂构成水|1,2-二氯乙烷液液界面;施加电压时银离子由水相穿过水凝胶进入有机相,与TCNQ-反应生成AgTCNQ纳米棒.结果表明液/液界面电化学方法为合成有机金属功能材料的有效途径.
黄丽
,
汪宜娴
,
Michael V. Mirkin
,
任斌
,
詹东平
. 基于琼脂支撑的液/液界面上AgTCNQ的电化学合成[J]. 电化学, 2012
, 18(5)
: 405
-409
.
DOI: 10.61558/2993-074X.2611
Silver-tetracyanoquinodimethane (AgTCNQ) is an important charge transfer salt due to its high conductivity and other electronic properties. In this communication, we report the synthesis of AgTCNQ at the liquid/liquid interface. Agar was used as a gelling agent to support water/1,2-dichloroethane (DCE) interface. Silver ions were transferred from the hydrogel into DCE phase, where they combined with TCNQ- to form AgTCNQ nanorods. The developed method can provide a new route for synthesis of functional materials based on the electrochemistry at the liquid/liquid interface.
[1] Uyeda N, Kobayashi T, Ishizuka K, et al. Crystal-structure of Ag.TCNQ[J]. Nature, 1980, 285(5760): 95-97.
[2] Bryce M, Murphy L. Organic melts[J]. Nature, 1984, 309(5964): 119-126.
[3] Cao G, Fang F, Ye X, et al. Microscopy investigation of Ag-TCNQ micro/nanostructures synthesized via two solution routes[J]. Micron ,2005, 36(3): 285-290.
[4] Xiao K,Tao J, Puretzky A, et al. Selective patterned growth of single-crystal Ag-TCNQ nanowires for devices by vapor-solid chemical reaction[J]. Advanced Functional Materials, 2008, 18(19): 3043-3048.
[5] Zheng W, Li Z, Yang F, et al. A simple and effective route for one-dimensional Ag-TCNQ metal-organic microstructures[J]. Materials Letters, 2008, 62 (8/9): 1448-1450.
[6] Andala D, Shin S, Lee H Y, et al. Templated synthesis of amphiphilic nano-particles at the liquid/liquid interface[J]. ACS Nano, 2012, 6(2): 1044-1050.
[7] Lee W, Chena H, Dryfeb R, et al. Kinetics of nanoparticle synthesis by liquid-liquid interfacial reaction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 343(1/3): 3-7.
[8] Girault H H. Electrochemistry at liquid|liquid interfaces[M]//Electroanalytical chemistry. Bard A J, Zoski S G, Edt. Boca Raton F L: CRC Press, 2010, 23: 1-104.
[9] Dryfe R A W. The electrifical liquid-liquid interface[M]//Rice S A, Edt. Advances in chemical physics. New York: Wiley-Interscience, 2009, 141: 153.
[10] Zhan D, Li X, Zhan W, et al. Scanning electrochemical microscopy. 58. Application of a micropipet-supported ITIES tip to detect Ag+ and study its effect on fibroblast cells[J]. Analytical Chemistry, 2007, 79 (14): 5225-5231.
[11] Forssten C, Strutwolf J, Williams D. Liquid-liquid interface electrochemistry applied to study of a two-phase permanganate oxidation[J]. Electrochemistry Communications, 2001, 3(11): 619-623.
[12] Slevin C, Zhang J, Unwin P. Oxidation of 4-methylanisole by aqueous cerium(IV) in a two-phase immiscible liquid/liquid system: Interfacial versus homogeneous control[J]. The Journal of Physical Chemistry B, 2002, 106(11): 3019-3025.
[13] Fermin J, Duong H, Ding Z, et al. Photoinduced electron transfer at liquid/liquid interfaces Part II. A study of the electron transfer and recombination dynamics by intensity modulated photocurrent spectroscopy (IMPS)[J]. Physical Chemistry Chemical Physics, 1999, 1(7):