[1] Jacobson A J. Materials for Solid Oxide Fuel Cells[J]. Chemistry of Materials, 2010, 22: 660-674.
[2] Brett D J L, Atkinson A, Brandon N P, et al. Intermediate temperature solid oxide fuel cells[J]. Chemical Society Reviews, 2008, 37: 1568-1578.
[3] Jiang S P, Chan S H. A review of anode materials development in solid oxide fuel cells[J]. Journal of Materials Science, 2004, 39: 4405-4439.
[4] Muller A C, Herbstritt D, Ivers-Tiffee E. Development of a multilayer anode for solid oxide fuel cells[J]. Solid State Ionics, 2002, 152-153: 537-542.
[5] Dees D W, Claar T D, Easler T E, et al. Conductivity of porous Ni/Zro2-Y2o3 cermets[J]. Journal of the Electrochemical Society, 1987, 134: 2141-2146.
[6] Murray E P, Tsai T, Barnett S A. A direct-methane fuel cell with a ceria-based anode[J]. Nature, 1999, 400: 649-651.
[7] Tsoga A, Naoumidis A, Nikolopoulos P. Wettability and interfacial reactions in the systems Ni/YSZ and Ni/Ti-TiO2/YSZ[J]. Acta Materialia, 1996, 44: 3679-3692.
[8] Jiang S P. Sintering behavior of Ni/Y2O3-ZrO2 cermet electrodes of solid oxide fuel cells[J]. Journal of Materials Science, 2003, 38: 3775-3782.
[9] Wilson J R, Kobsiriphat W, Mendoza R, et al. Three-dimensional reconstruction of a solid-oxide fuel-cell anode[J]. Nature Materials, 2006, 5: 541-544.
[10] Chen H Y, Yu H C, Cronin J S, et al. Simulation of coarsening in three-phase solid oxide fuel cell anodes[J]. Journal of Power Sources, 2011, 196: 1333-1337.
[11] Zha S W, Cheng Z, Liu M L. Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2007, 154: B201-B206.
[12] Eguchi K, Kojo H, Takeguchi T, et al. Fuel flexibility in power generation by solid oxide fuel cells[J]. Solid State Ionics, 2002, 152: 411-416.
[13] Kim H, da Rosa C, Boaro M, et al. Fabrication of highly porous yttria-stabilized zirconia by acid leaching nickel from a nickel-yttria-stabilized zirconia cermet[J]. Journal of the American Ceramic Society, 2002, 85: 1473-1476.
[14] Kim H, Lu C, Worrell W L, et al. Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells[J]. Journal of the Electrochemical Society, 2002, 149: A247-A250.
[15] Zha S, Tsang P, Cheng Z, et al. Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1-xMnxO3 under anodic conditions[J]. Journal of Solid State Chemistry, 2005, 178: 1844-1850.
[16] Mukundan R, Brosha E L, Garzon F H. Sulfur Tolerant Anodes for SOFCs[J]. Electrochemical and Solid-State Letters, 2004, 7: A5-A7.
[17] Aguilar L, Zha S, Li S, et al. Sulfur-tolerant materials for the hydrogen sulfide SOFC[J]. Electrochemical and Solid-State Letters, 2004, 7: A324-A326.
[18] Marina O A, Pederson L R. Novel ceramic anodes for SOFCs tolerant to oxygen, carbon and sulfur, in The Fifth European Solid Oxide Fuel Cell Forum[M]//J Huijismans. European Fuel Cell Forum. Switzerland: Lucerne, 2002: 481-489.
[19] Yang C H, Yang Z B, Jin C, et al. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells[J]. Advanced Materials, 2012, 24: 1439-1443.
[20] Jiang S P, Chen X J, Chan S H, et al. (La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells[J]. Solid State Ionics, 2006, 177: 149-157.
[21] Ong K P, Wu P, Liu L, et al. Optimization of electrical conductivity of LaCrO3 through doping: A combined study of molecular modeling and experiment[J]. Applied Physics Letters, 2007, 90.
[22] Tao S W, Irvine J T S. Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs[J]. Journal of the Electrochemical Society, 2004, 151: A252-A259.
[23] Jiang S P, Love J G, Apateanu L. Effect of contact between electrode and current collector on the performance of solid oxide fuel cells[J]. Solid State Ionics, 2003, 160: 15-26.
[24] Trembly J P, Marquez A I, Ohrn TR, et al. Effects of coal syngas and H2S on the performance of solid oxide fuel cells: Single-cell tests[J]. Journal of Power Sources, 2006, 158: 263-273.
[25] Zhang L, Jiang S P, He H Q, et al. A comparative study of H2S poisoning on electrode behavior of Ni/YSZ and Ni/GDC anodes of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35: 12359-12368.
[26] Kerman K, Lai B K, Ramanathan S. Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells: Electrode microstructure and stability considerations[J]. Journal of Power Sources, 2011, 196: 2608-2614.
[27] Ye Y M, He T M, Li Y, et al. Pd-promoted La0.75Sr0.25Cr0.5Mn0.5O3/YSZ composite anodes for direct utilization of methane in SOFCs[J]. Journal of the Electrochemical Society, 2008, 155: B811-B818.
[28] Klages M, Kruger P, Haussmann J, et al. Investigation of the influence of GDL properties on the water balance by means of neutron radiography[J]. Materials Testing, 2010, 52: 718-724.
[29] Jin Y, Yasutake H, Yamahara K, et al. Suppressed carbon deposition behavior in nickel/yittria-stablized zirconia anode with SrZr0.95Y0.05O3-α in Dry Methane Fuel[J]. Journal of the Electrochemical Society, 2010, 157: B130-B134.
[30] Wang W, Jiang S P, Tok A I Y, et al. GDC-impregnated Ni anodes for direct utilization of methane in solid oxide fuel cells[J]. Journal of Power Sources, 2006, 159: 68-72.
[31] Yang L, Choi Y, Qin W T, et al. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells[J]. Nature Communications, 2011, 2.
[32] Cheng Z, Wang J H, Choi Y M, et al. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: Electrochemical behavior, in situ characterization, modeling, and future perspectives[J]. Energy & Environmental Science, 2011, 4: 4380-4409.
[33] Jiang S P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review[J]. Journal of Materials Science, 2008, 43: 6799-6833.
[34] Carter S, Selcuk A, Chater R J, et al. Oxygen-transport in selected nonstoichiometric perovskite-structure oxides[J]. Solid State Ionics, 1992, 53-6: 597-605.
[35] Zhen Y D, Jiang S P. Transition behavior for O2 reduction reaction on (La,Sr)MnO3/YSZ composite cathodes of solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2006, 153: A2245-A2254.
[36] Jiang S P, Wang W. Fabrication and performance of GDC-impregnated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2005, 152: A1398-A1408.
[37] Esquirol A, Brandon N P, Kilner J A, et al. Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs[J]. Journal of the Electrochemical Society, 2004, 151: A1847-A1855.
[38] Jiang S P. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes[J]. Solid State Ionics, 2002, 146: 1-22.
[39] Shao Z P, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431: 170-173.
[40] Wei B, Lu Z, Li S Y, et al. Thermal and electrical properties of new cathode material Ba0.5Sr0.5Co0.8Fe0.2O3-δ for solid oxide fuel cells[J]. Electrochemical and Solid State Letters, 2005, 8: A428-A431.
[41] Yi J X, Schroeder M, Weirich T, et al. Behavior of Ba(Co, Fe, Nb)O3-δ perovskite in CO2-containing atmospheres: Degradation mechanism and materials design[J]. Chemistry of Materials, 2010, 22: 6246-6253.
[42] Zhou W, Liang F L, Shao Z P, et al. Hierarchical CO2-protective shell for highly efficient oxygen reduction reaction[J]. Scientific Reports, 2012, 2.
[43] Tu H Y, Stimming U. Advances, aging mechanisms and lifetime in solid-oxide fuel cells[J]. Journal of Power Sources, 2004, 127: 284-293.
[44] Fergus J W. Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2007, 32: 3664-3671.
[45] Schuler J A, Gehrig C, Wuillemin Z, et al. Air side contamination in solid oxide fuel cell stack testing[J]. Journal of Power Sources, 2011, 196: 7225-7231.
[46] Taniguchi S, Kadowaki M, Yasuo T, et al. Suppression of chromium diffusion to an SOFC cathode from an alloy separator by a cathode second layer[J]. Denki Kagaku, 1996, 64: 568-574.
[47] Fu C J, Sun K N, Zhang N Q, et al. Mechanism of chromium poisoning of LSM cathode in solid oxide fuel cell[J]. Chemical Journal of Chinese Universities-Chinese, 2007, 28: 1762-1764.
[48] Konysheva E, Penkalla H, Wessel E, et al. Chromium poisoning of perovskite cathodes by the ODS alloy Cr5Fe1Y2O3 and the high chromium ferritic steel Crofer22APU[J]. Journal of the Electrochemical Society, 2006, 153: A765-A773.
[49] Paulson S C, Birss V I. Chromium poisoning of LSM-YSZ SOFC cathodes - I. Detailed study of the distribution of chromium species at a porous, single-phase cathode[J]. Journal of the Electrochemical Society, 2004, 151: A1961-A1968.
[50] Jiang S P, Zhang J P, Apateanu L, et al. Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells I. Mechanism and kinetics[J]. Journal of the Electrochemical Society, 2000, 147: 4013-4022.
[51] Badwal S P S, Deller R, Foger K, et al. Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells[J]. Solid State Ionics, 1997, 99: 297-310.
[52] Jiang SP, Christiansen L, Hughan B, et al. Effect of glass sealant materials on microstructure and performance of Sr-doped LaMnO3 cathodes[J]. Journal of Materials Science Letters, 2001, 20: 695-697.
[53] Xiong Y P, Yamaji K, Horita T, et al. Sulfur Poisoning of SOFC Cathodes[J]. Journal of the Electrochemical Society, 2009, 156: B588-B592.
[54] Horita T, Kishimoto H, Yamaji K, et al. Effects of impurities on the degradation and long-term stability for solid oxide fuel cells[J]. Journal of Power Sources, 2009, 193: 194-198.
[55] Zhou X D, Templeton J W, Zhu Z, et al. Electrochemical performance and stability of the cathode for solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2010, 157: B1019-B1023.
[56] Jiang S P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges[J]. International Journal of Hydrogen Energy, 2012, 37: 449-470.
[57] Gorte R J, Vohs J M. Nanostructured anodes for solid oxide fuel cells[J]. Current Opinion in Colloid & Interface Science, 2009, 14: 236-244.
[58] Jiang Z Y, Xia C R, Chen F L. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique[J]. Electrochimica Acta, 2010, 55: 3595-3605.
[59] Sholklapper T Z, Jacobson C P, Visco S J, et al. Synthesis of Dispersed and Contiguous Nanoparticles in Solid Oxide Fuel Cell Electrodes[J]. Fuel Cells, 2008, 8: 303-312.
[60] Liang F L, Chen J, Cheng J L, et al. Novel nano-structured Pd plus yttrium doped ZrO2 cathodes for intermediate temperature solid oxide fuel cells[J]. Electrochemistry Communications, 2008, 10: 42-46.
[61] Sholklapper T Z, Kurokawa H, Jacobson C P, et al. Nanostructured solid oxide fuel cell electrodes[J]. Nano Letters, 2007, 7: 2136-2141.
[62] Jung SW, Vohs J M, Gorte R J. Preparation of SOFC anodes by electrodeposition[J]. Journal of the Electrochemical Society, 2007, 154: B1270-B1275.
[63] Ai N, Jiang S P, Chen K F, et al. Vacuum-assisted electroless copper plating on Ni/(Sm,Ce)O2 anodes for intermediate temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36: 7661-7669.
[64] Jiang S P, Wang W. Novel structured mixed ionic and electronic conducting cathodes of solid oxide fuel cells[J]. Solid State Ionics, 2005, 176: 1351-357.
[65] Murray E P, Barnett S A. (La,Sr) MnO3-(Ce,Gd)O2-x composite cathodes for solid oxide fuel cells[J]. Solid State Ionics, 2001, 143: 265-273.
[66] Jiang S P, Zhang J P, Foger K. Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells - II. Effect on O2 reduction reaction[J]. Journal of the Electrochemical Society, 2000, 147: 3195-3205.
[67] Murray E P, Tsai T, Barnett S A. Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study[J]. Solid State Ionics, 1998, 110: 235-243.
[68] Ai N, Jiang S P, Lu Z, et al. Nanostructured (Ba,Sr)(Co,Fe)O3-δ Impregnated (La,Sr)MnO3 Cathode for Intermediate-Temperature Solid Oxide Fuel Cells[J]. Journal of the Electrochemical Society, 2010, 157: B1033-B1039.
[69] Shah M, Voorhees P W, Barnett S A. Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: The role of nano-particle coarsening[J]. Solid State Ionics, 2011, 187: 64-67.
[70] Liang F L, Chen J, Jiang S P, et al. Mn-Stabilised Microstructure and Performance of Pd-impregnated YSZ Cathode for Intermediate Temperature Solid Oxide Fuel Cells[J]. Fuel Cells, 2009, 9: 636-642.
[71] Babaei A, Zhang L, Liu E J, et al. Journal of Alloys and Compounds, 2011, 509: 4781-4787.
[72] Badwal S P S. Zirconia-based solid electrolytes-microstructure, stability and ionic-conductivity [J]. Solid State Ionics, 1992, 52: 23-32.
[73] Ishihara T. Development of new fast oxide ion conductor and application for intermediate temperature solid oxide fuel cells[J]. Bulletin of the Chemical Society of Japan, 2006, 79: 1155-1166.
[74] Hull S. Superionics: Crystal structures and conduction processes[J]. Reports on Progress in Physics, 2004, 67: 1233-1314.
[75] Nomura K, Mizutani Y, Kawai M, et al. Aging and Raman scattering study of scandia and yttria doped zirconia[J]. Solid State Ionics, 2000, 132: 235-239.
[76] Badwal S P S, Ciacchi F T, Rajendran S, et al. An investigation of conductivity, microstructure and stability of electrolyte compositions in the system 9 mol% (Sc2O3-Y2O3)-ZrO2(Al2O3)[J]. Solid State Ionics, 1998, 109: 167-186.
[77] Badwal S P S, Rajendran S. Effect of microstructures and nanostructures on the properties of ionic conductors[J]. Solid State Ionics, 1994, 70: 83-95.
[78] Liu Y, Lao L E. Structural and electrical properties of ZnO-doped 8 mol% yttria-stabilized zirconia[J]. Solid State Ionics, 2006, 177: 159-163.
[79] Mogensen M, Sammes N M, Tompsett G A. Physical, chemical and electrochemical properties of pure and doped ceria[J]. Solid State Ionics, 2000, 129: 63-94.
[80] Zhan Z L, Wen T L, Tu H Y, et al. AC impedance investigation of samarium-doped ceria[J]. Journal of the Electrochemical Society, 2001, 148: A427-A432.
[81] Jung G B, Huang T J, Chang C L. Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte[J]. Journal of Solid State Electrochemistry, 2002, 6: 225-230.
[82] Zha S W, Xia C R, Meng G Y. Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells[J]. Journal of Power Sources, 2003, 115: 44-48.
[83] Vanherle J, Horita T, Kawada T, et al. Sintering behaviour and ionic conductivity of yttria-doped ceria[J]. Journal of the European Ceramic Society, 1996, 16: 961-973.
[84] Zhang X, Robertson M, Deces-Petit C, et al. Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte[J]. Journal of Power Sources, 2007, 164: 668-677.
[85] Ishihara T, Tabuchi J, Ishikawa S, et al. Recent progress in LaGaO3 based solid electrolyte for intermediate temperature SOFCs[J]. Solid State Ionics, 2006, 177: 1949-1953.
[86] Yan J W, Matsumoto H, Enoki M, et al. High-power SOFC using La0.9Sr0.1Ga0.8Mg0.2O3-δ/Ce0.8Sm0.2O2-δ composite film[J]. Electrochemical and Solid State Letters, 2005, 8: A389-A391.
[87] Kosacki I, Rouleau C M, Becher P F, et al. Nanoscale effects on the ionic conductivity in highly textured YSZ thin films[J]. Solid State Ionics, 2005, 176: 1319-1326.
[88] Garcia-Barriocanal J, Rivera-Calzada A, Varela M, et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2 : Y2O3/SrTiO3 heterostructures[J]. Science, 2008, 321: 676-680.
[89] Vincent A, Savignat S B, Gervais F. Elaboration and ionic conduction of apatite-type lanthanum silicates doped with Ba, La10-xBax(SiO4) 6O3-x/2 with x=0.25-2[J]. Journal of the European Ceramic Society, 2007, 27: 1187-1192.
[90] Slater P R, Sansom J E H, Tolchard J R. Development of apatite-type oxide ion conductors[J]. Chemical Record, 2004, 4: 373-384.
[91] Jiang S P, Zhang L, He H Q, et al. Synthesis and characterization of lanthanum silicate apatite by gel-casting route as electrolytes for solid oxide fuel cells[J]. Journal of Power Sources, 2009, 189: 972-981.
[92] Komori S, Kimura M, Watanabe K, et al. Compact Fuel Processor by Employing Monolithic Catalyst for 1 kW Class Residential Polymer Electrolyte Fuel Cells[J]. Journal of the Japan Petroleum Institute, 2011, 54: 52-5.
[93] Jung D W, Duncan K L, Wachsman E D. Effect of total dopant concentration and dopant ratio on conductivity of (DyO1.5)x-(WO3)y-(BiO1.5)1-x-y[J]. Acta Materialia, 2010, 58: 355-363.
[94] Wachsman E D, Jayaweera P, Jiang N, et al. Stable high conductivity ceria/bismuth oxide bilayered electrolytes[J]. Journal of the Electrochemical Society, 1997, 144: 233-236.
[95] Ahn J S, Pergolesi D, Camaratta M A, et al. High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells[J]. Electrochemistry Communications, 2009, 11: 1504-1507.
[96] Mori M, Yamamoto T, Itoh H, et al. Compatibility of alkaline earth metal (Mg, Ca, Sr)-doped lanthanum chromites as separators in planar-type high-temperature solid oxide fuel cells[J]. Journal of Materials Science, 1997, 32: 2423-2431.
[97] Fergus J W. Lanthanum chromite-based materials for solid oxide fuel cell interconnects[J]. Solid State Ionics, 2004, 171: 1-15.
[98] Sakai N, Yokokawa H, Horita T, et al. Lanthanum chromite-based interconnects as key materials for SOFC stack development[J]. International Journal of Applied Ceramic Technology, 2004, 1: 23-30.
[99] Liu Z G, Zheng Z R, Huang X Q, et al. The Pr4+ ions in Mg doped PrGaO3 perovskites[J]. Journal of Alloys and Compounds, 2004, 363: 60-62.
[100] Zhou X L, Deng F J, Zhu M X, et al. High performance composite interconnect La0.7Ca0.3CrO3/20 mol% ReO1.5 doped CeO2 (Re = Sm, Gd, Y) for solid oxide fuel cells[J]. Journal of Power Sources, 2007, 164: 293-299.
[101] Shen Y, Liu M N, He T M, et al. A potential interconnect material for solid oxide fuel cells: Nd0.75Ca0.25Cr0.98O3-δ[J]. Journal of Power Sources, 195: 977-983.
[102] Zhu W Z, Deevi S C. Development of interconnect materials for solid oxide fuel cells[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003, 348: 227-243.
[103] Fergus J W. Metallic interconnects for solid oxide fuel cells[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005, 397: 271-283.
[104] Holt A, Kofstad P. Electrical-conductivity and derect structure of Cr2O3. 2. Reduced temperatures (less than similar to 1000 oC)[J]. Solid State Ionics, 1994, 69: 137-143.
[105] Quadakkers W J, Hansel M, Rieck T. Carburization of Cr-based ODS alloys in SOFC relevant environments[J]. Materials and Corrosion-Werkstoffe Und Korrosion, 1998, 49: 252-257.
[106] Blum L, Buchkremer H P, Gross S, et al. Solid oxide fuel cell development at Forschungszentrum Juelich[J]. Fuel Cells, 2007, 7: 204-210.
[107] Yang Z G, Hardy J S, Walker M S, et al. Structure and conductivity of thermally grown scales on ferritic Fe-Cr-Mn steel for SOFC interconnect applications[J]. Journal of the Electrochemical Society, 2004, 151: A1825-A1831.
[108] Yao K S, Chen Y C, Chao C H, et al. Electrical enhancement of DMFC by Pt-M/C catalyst-assisted PVD[J]. Thin Solid Films, 2010, 518: 7225-7228.
[109] Hua B, Pu J, Zhang J F, et al. Ni-Mo-Cr alloy for interconnect applications in intermediate temperature solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2009, 156: B93-B98.
[110] Chen X B, Hua B, Pu J, et al. Interaction between (La, Sr)MnO3 cathode and Ni-Mo-Cr metallic interconnect with suppressed chromium vaporization for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34: 5737-5748.
[111] Fergus J W. Sealants for solid oxide fuel cells[J]. Journal of Power Sources, 2005, 147: 46-57.
[112] Eichler K, Solow G, Otschik P, et al. BAS (BaO center dot Al2O3 center dot SiO2)-glasses for high temperature applications[J]. Journal of the European Ceramic Society, 1999, 19: 1101-1104.
[113] Yang Z G, Stevenson J W, Meinhardt K D. Chemical interactions of barium-calcium-aluminosilicate-based sealing glasses with oxidation resistant alloys[J]. Solid State Ionics, 2003, 160: 213-225.
[114] Chen K F, Ai N, Lievens C, et al. Impact of volatile boron species on the microstructure and performance of nano-structured (Gd,Ce)O2 infiltrated (La,Sr)MnO3 cathodes of solid oxide fuel cells[J]. Electrochemistry Communications, 2012: in press.
[115] Duquette J, Petric A. Silver wire seal design for planar solid oxide fuel cell stack[J]. Journal of Power Sources, 2004, 137: 71-75.
[116] Bram M, Reckers S, Drinovac P, et al. Deformation behavior and leakage tests of alternate sealing materials for SOFC stacks[J]. Journal of Power Sources, 2004, 138: 111-119.
[117] Sang S B, Pu J, Jiang S P, et al. Prediction of H2 leak rate in mica-based seals of planar solid oxide fuel cells[J]. Journal of Power Sources, 2008, 182: 141-144.
[118] Chou Y S, Stevenson J W, Chick L A. Ultra-low leak rate of hybrid compressive mica seals for solid oxide fuel cells[J]. Journal of Power Sources, 2002, 112: 130-136.
[119] Chou Y S, Stevenson J W. Thermal cycling and degradation mechanisms of compressive mica-based seals for solid oxide fuel cells[J]. Journal of Power Sources, 2002, 112: 376-383.
[120] Khan T I, Al-Badri A. Reactive brazing of ceria to an ODS ferritic stainless steel[J]. Journal of Materials Science, 2003, 38: 2483-8.
[121] Weil K S. The state-of-the-art in sealing technology for solid oxide fuel cells[J]. Jom, 2006, 58: 37-44.
[122] Foger K, Love J G. Fifteen years of SOFC development in Australia[J]. Solid State Ionics, 2004, 174: 119-126.
[123] Jiang S P. Thin coating technologies and applications in high-temperature solid oxide fuel cells[M]// Zhang S. Handbook of Nanostructured Film Devices and Coatings. CRC Press, 2010: 155-187.
[124] Minh N Q. Solid oxide fuel cell technology-features and applications[J]. Solid State Ionics, 2004, 174: 271-277.
[125] Srivastava P K, Quach T, Duan Y Y, et al. Electrode supported solid oxide fuel cells: Electrolyte films prepared by DC magnetron sputtering[J]. Solid State Ionics, 1997, 99: 311-319.
[126] Kim J W, Virkar A V, Fung K Z, et al. Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells[J]. Journal of the Electrochemical Society, 1999, 146: 69-78.
[127] Sarantaridis D, Atkinson A. Redox cycling of Ni-based solid oxide fuel cell anodes: A review[J]. Fuel Cells, 2007, 7: 246-58.
[128] Lang M, Henne R, Schaper S, et al. Development and characterization of vacuum plasma sprayed thin film solid oxide fuel cells[J]. Journal of Thermal Spray Technology, 2001, 10: 618-625.
[129] Brandon N P, Blake A, Corcoran D, et al. Development of metal supported solid oxide fuel cells for operation at 500-600 degrees C[J]. Journal of Fuel Cell Science and Technology, 2004, 1: 61-65.
[130] Bryant B, Renner C, Tokunaga Y, et al. Imaging oxygen defects and their motion at a manganite surface[J]. Nature Communications, 2011, 2.
[131] Cheng Z, Liu M L. Characterization of sulfur poisoning of Ni-YSZ anodes for solid oxide fuel cells using in situ Raman micro spectroscopy[J]. Solid State Ionics, 2007, 178: 925-935.