运用电化学电位阶跃技术,在玻碳基底上制得FeCo合金纳米电催化剂(FeCo/GC).XRD、SEM和TEM表征结果显示,合成的FeCo合金纳米粒子为单晶,呈立方体形貌,分布较均一,平均粒径65 nm,Fe和Co原子百分比约1:1.电化学测试结果表明,FeCo/GC具有比Fe/GC更高的电催化活性,对亚硝酸盐还原的活性是Fe/GC的4.7倍.FeCo/GC对氧还原也表现出优异的催化性能.
李明轩
,
欧洁连
,
陈声培
,
王鹏
,
许斌斌
,
孙世刚
. FeCo合金纳米电催化剂制备及其性能研究[J]. 电化学, 2013
, 19(2)
: 125
-129
.
DOI: 10.61558/2993-074X.3366
The FeCo alloy nanoparticles were electrodeposited on glassy carbon electrode by chronoamperometry and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the shapes of FeCo nanoparticles were cubes with an average size of 65 nm. The atom ratio of Fe and Co is 1:1. As indicated from the pattern of selected area electron diffraction (SAED), the FeCo cubic nanoparticles were single crystal which belonged to body-centered cubic with an interval of 0.201 nm referring to the (110) facets of FeCo alloy. The FeCo cubic nanoparticles exhibited the enhanced electrocatalytic activities toward nitrite electroreduction and oxygen reduction reaction.
[1] Che C, Li W, Lin S, et al. Magnetic nanoparticle-supported Hoveyda-Grubbs catalysts for ring-closing metathesis reactions[J]. Chemical Communications, 2009, 45(40): 5990-5992.
[2] Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science, 2000, 287(5460): 1989-1992.
[3] Zahn M. Magnetic fluid and nanoparticle applications to nanotechnology[J]. Journal of Nanoparticle Research, 2001, 3(1): 73-78.
[4] Viau G, Fievet-Vincent F, Fievet F. Monodisperse iron-based particles: Precipitation in liquid polyols[J]. Journal of Materials Chemistry, 1996, 6(6): 1047-1053.
[5] Su X, Zheng H, Yang Z, et al. Preparation of nanosized particles of FeNi and FeCo alloy in solution[J]. Journal of Materials Science, 2003, 38(22): 4581-4585.
[6] Akkouche K, Guittoum A, Boukherroub N, et al. Evolution of structure, microstructure and hyperfine properties of nanocrystalline Fe50Co50 powders prepared by mechanical alloying[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(21): 2542-2548.
[7] Bonnemann H, Brand R A, Brijoux W, et al. Air stable Fe and Fe-Co magnetic fluids—synthesis and characterization[J]. Applied Organometallic Chemistry, 2005, 19(6): 790-796.
[8] Desvaux C, Amiens C, Fejes P, et al. Multimillimetre-large superlattices of air-stable iron-cobalt nanoparticles[J]. Nature Materials, 2005, 4(10): 750-753.
[9] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735.
[10] Tian N, Zhou Z Y, Yu N F, et al. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation[J]. Journal of the American Chemical Society, 2010, 132(22): 7580-7581.
[11] Chen Y X, Chen S P, Chen Q S, et al. Electrochemical preparation of iron cuboid nanoparticles and their catalytic properties for nitrite reduction[J]. Electrochimica Acta, 2008, 53(23): 6938-6943.
[12] Chen Y X, Chen S P, Zhou Z Y, et al. Tuning the shape and catalytic activity of Fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry[J]. Journal of the American Chemical Society, 2009, 131(31): 10860-10862.