通过电聚合制得新型聚钙羧酸修饰电极并用于构建检测甲胎蛋白(AFP)的高灵敏电化学免疫传感器. 采用扫描电镜(SEM)、电化学交流阻抗(EIS)观察、表征修饰电极和AFP单克隆抗体(Ab1)固定前后的差异. 固定Ab1的电极与一定浓度的AFP、辣根过氧化物酶联AFP单克隆抗体(HRP-Ab2)反应,形成夹心型免疫复合物. 辣根过氧化物酶(HRP)催化3,3',5,5'-四甲基联苯胺(TMB)底物产生电流信号,实现AFP浓度的测定. 本检测方法灵敏度高,重现性好.
林晓
,
翁少煌
,
周剑章
,
刘爱林
,
林新华
,
游勇基
. 基于新型聚钙羧酸修饰电极的甲胎蛋白电化学免疫传感器研究[J]. 电化学, 2012
, 18(4)
: 371
-376
.
DOI: 10.61558/2993-074X.2933
A highly sensitive electrochemical immunosensor based on novel electropolymerized polycalconcarboxylic acid modified electrode (poly-CCA/GC) has been fabricated for the detection of alpha-fetoprotein (AFP). The differences of the poly-CCA/GC electrodes before and after the immobilization of AFP antibody were characterized via scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The immobilization of antibody/antigen/antibody-HRP sandwich was formed on the poly-CCA modified electrode for the determination of special AFP concentrations. The electrochemical signals generated from the HRP which catalyzed the TMB substrate were measured. Experiment results indicated that the developed immunosensor showed a good sensitivity and precision.
[1] Yin Y M, Cao Y, Xu Y Y, et al. Colorimetric immunoassay for detection of tumor markers[J]. International Journal of Molecular Sciences, 2010, 11(12): 5078-5095.
[2] Wang J, Cao Y, Xu Y Y, et al. Colorimetric multiplexed immunoassay for sequential detection of tumor markers[J]. Biosensors and Bioelectronics, 2009, 25(2): 532-536.
[3] Wu J, Fu Z F, Yan F, et al. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers[J]. Trends in Analytical Chemistry, 2007, 26(7): 679-688.
[4] Liu G D, Lin Y H. Nanomaterial labels in electrochemical immunosensors and immunoassays[J]. Talanta, 2007, 74(3): 308-317.
[5] Xu S J, Liu Y, Wang T H, et al. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor basedon luminol and graphene for cancer biomarker detection[J]. Analytical Chemistry, 2011, 83(10): 3817-3823.
[6] Wang S J, Harris E, Shi J, et al. Electrogenerated chemiluminescence determination of C-reactive protein with carboxyl CdSe/ZnS core/shell quantum dots[J]. Physical Chemistry Chemical Physics, 2010, 12(34): 10073-10080.
[7] Lai G S, Wu J, Ju H X, et al. Streptavidin-functionalized silver-nanoparticle-enriched carbon nanotube tag for ultrasensitive multiplexed detection of tumor markers[J]. Advanced Functional Materials, 2011, 21(15): 2938-2943.
[8] Liu A L, Zhang S B, Chen W, et al. Simultaneous voltammetric determination of norepinephrine, ascorbic acid and uric acid on polycalconcarboxylic acid modified glassy carbon electrode[J]. Biosensors and Bioelectronics, 2008, 23(10): 1488-1495.
[9] Weng S H, Lin Z H, Zhang Y, et al. Facile synthesis of SBA-15/polyaniline nanocomposites with high electrochemical activity under neutral and acidic conditions[J], Reactive & Functional Polymers, 2009, 69(2): 130-136.
[10] Li R(李容), Xiong J(熊健), Zhu W Q(朱伟琼), et al. Electrochemical behaviors of hydroquinone on Polypyrrole/STAB-NaMMT/GC electrode[J]. Journal of Electrochemistry(电化学),2011, 17(4): 453-457.
[11] Wang Z Y, Liu L, Xu Y Y, et al. Simulation and assay of protein biotinylation with electrochemical technique[J], Biosensors and Bioelectronics, 2011, 26(11): 4610-4613.
[12] Wang J, Cao Y, Li Y, et al. Electrochemical strategy for detection of phosphorylation based on enzyme-linked electrocatalysis[J], Journal of Electroanalytical Chemistry, 2011, 656(SI): 274-278.
[13] Weng S H, Lin Z H, Chen L X, et al. Electrochemical synthesis and optical properties of helical polyaniline nanofibers[J]. Electrochimica Acta, 2010, 55(8): 2727-2733.
[14] Fanj-Bolado P, Gonzalez-Garcia M B, Costa-Garcia A. Amperometric detection in TMB/HRP-based assays[J]. Analytical and Bioanalytical Chemistry, 2004, 382(2): 297-302.