欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

锂离子电池碳包覆锡负极性能研究

  • 申晓晓 ,
  • 刘贵昌 ,
  • 王立达
展开
  • 大连理工大学 化工学院,辽宁 大连 116024

收稿日期: 2012-01-09

  修回日期: 2012-02-09

  网络出版日期: 2012-03-09

Properties of Carbon Coated Tin Negative Electrode for Lithium-ion Battery

  • SHEN Xiao-Xiao ,
  • LIU Gui-Chang ,
  • WANG Li-Da
Expand
  • School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

Received date: 2012-01-09

  Revised date: 2012-02-09

  Online published: 2012-03-09

摘要

应用水热法分解葡萄糖制作锂离子电池碳包覆锡负极. 充放电测试表明,添加5%(by mass)乙炔黑导电剂的该电极初始放电比容量达967 mAh.g-1,经50周循环其放电比容量仍保持362 mAh.g-1,远高于锡电极的比容量(50周循环166 mAh.g-1). 碳包覆可防止锡粉团聚,降低锡的不可逆容量损失. 而添加乙炔黑可降低碳包覆电极与电解液间的交流阻抗,改善电极内部锂离子及电子的传导通道,从而也提高了该电极的初始放电比容量.

本文引用格式

申晓晓 , 刘贵昌 , 王立达 . 锂离子电池碳包覆锡负极性能研究[J]. 电化学, 2013 , 19(2) : 169 -173 . DOI: 10.61558/2993-074X.2946

Abstract

Carbon coated tin power was prepared by decomposing glucose applying a hydrothermal method, and was further used as the active material for negative electrode of lithium secondary battery. Charge-discharge tests show that the carbon coated tin electrode with the addition of 5 wt.% acetylene black as a conductive agent could obtain an initial discharge capacity of 967 mAh.g-1 and a discharge capacity of 362 mAh.g-1 after 50 cycles, which is much higher than that of tin electrode (166 mAh.g-1 after 50 cycles). The coated carbon hinders the agglomeration of tin powder, reduces the irreversible capacity loss of tin; the addition of acetylene black could reduce the impedance between the electrode and the electrolyte, therefore, improve the transfer property of lithium ions and the electrons within the electrode, which contribute to the higher initial discharge capacity.

参考文献

[1] Zhang T, Fu L J, Gao J, et al. Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery [J]. Journal of Power Sources, 2007, 174(2): 770-773.
[2] Bazin L, Mitra S, Taberna P L, et al. High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries [J]. Journal of Power Sources, 2009, 188(2): 578-582.
[3] Liu S, Li Q, Chen Y X, et al. Carbon-coated copper-tin alloy anode material for lithium ion batteries [J]. Journal of Alloys and Compounds, 2009, 478(1/2): 694-698.
[4] Zou L, Gan L, Kang F Y, et al. Sn/C non-woven film prepared by electrospinning as anode materials for lithium ion batteries [J]. Journal of Power Sources, 2010, 195(4): 1216-1220.
[5] Yu H W, Hu S J, Hou X H, et al. Electrochemical performance of tin-aluminum thin film anode for lithium ion battery [M]// Gu Z W, Han Y F, Pan F H, et al. Materials Science Forum, Switzerland, Trans Tech Publications Ltd, 2009, 610-613: 467-471.
[6] Li J, Le D B, Ferguson P P, et al. Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries [J]. Electrochimica Acta, 2010, 55(8): 2991-2995.
[7] Song S W, Baek S W. Surface layer formation on Sn anode: ATR FTIR spectroscopic characterization [J]. Electrochimica Acta, 2009, 54(4): 1312-1318.
[8] Li H Q, Zhou H S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future [J]. Chemical Communications, 2012, 48(9): 1201-1217.
[9] Wang Z, Tian W H, Liu X H, et al. Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries [J]. Journal of Solid State Chemistry, 2007, 180(12): 3360-3365.
[10] Du Z J, Zhang S C, Jiang T, et al. Preparation and characterization of three-dimensional tin thin-film anode with good cycle performance [J]. Electrochimica Acta, 2010, 55(10): 3537-3541.
文章导航

/