欢迎访问《电化学(中英文)》期刊官方网站,今天是
电化学材料基础与表界面研究专辑(中国科学院化学研究所 万立骏院士主编)

纳米金三明治结构调制细胞色素c电子传递特性的分子机理研究

  • 蔺首睿 ,
  • 王立旭 ,
  • 姜秀娥 ,
  • 郭黎平
展开
  • 1. 中国科学院长春应用化学研究所 电分析化学国家重点实验室,吉林 长春 130022 2. 东北师范大学化学学院,吉林 长春 130024

收稿日期: 2011-11-29

  修回日期: 2012-03-21

  网络出版日期: 2012-03-25

基金资助

吉林省青年基金(No. 201101081)和中科院院长基金资助

On the Molecular Mechanism of Electron Transfer of Cytochrome c Modulated by Gold Nanoparticles in Nano-Sandwich Architecture

  • LIN Shou-Rui ,
  • WANG Li-Xu ,
  • JIANG Xiu-E ,
  • GUO Li-Ping
Expand
  • 1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; 2. Department of Chemistry, Northeast Normal University, Changchun 130024, China

Received date: 2011-11-29

  Revised date: 2012-03-21

  Online published: 2012-03-25

摘要

以细胞色素c(Cyt c)为模型蛋白,采用表面增强红外吸收光谱监测了三明治结构所吸附的纳米金对氧化还原诱导的Cyt c表面增强红外差谱的改变. 实验表明,在单层Cyt c分子表面组装金纳米粒子,使得血红素的红外差谱特征峰明显增强,这归因于纳米金和血红素之间的电子传递. 金纳米粒子与Cyt c氧化还原活性中心血红素的相互作用加速了蛋白质的电子传递. 这为实现并优化表面吸附蛋白质的直接电化学提供了一种新技术.

本文引用格式

蔺首睿 , 王立旭 , 姜秀娥 , 郭黎平 . 纳米金三明治结构调制细胞色素c电子传递特性的分子机理研究[J]. 电化学, 2012 , 18(3) : 263 -268 . DOI: 10.61558/2993-074X.2913

Abstract

The effects of adsorbed gold nanoparticles on the surface-enhanced infrared absorption (SEIRA) difference spectra of redox-induced cytochrome (Cyt) c in AuNPs/Cyt c/Au sandwich architecture were monitored by SEIRA spectroscopy. The results indicated that the intensity of SEIRA difference spectrum for the vibration of the heme was significantly increased due to the adsorption of gold nanoparticles on the Cyt c. This was induced by the electron transfer between the heme and the gold nanoparticles, which also promoted electron transfer of adsorbed protein. This study suggested a new technique for optimizing the electrochemical property of adsorbed protein.

参考文献

[1] Chen G F(陈桂芳), Liang Z Q(梁志强), Li G X(李根喜). Progress of electrochemical biosensors fabricated with nanomaterials[J]. Acta Biophysica Sinica (生物物理学报) [J]. 2010, 26(8): 711-725.
[2] Willner I, Willner B, Katz E. Biomolecule-nanoparticle hybrid systems for bioelectronic applications[J]. Bioelectrochemistry, 2007, 70(1): 2-11.
[3] Liu S Q, Leech D, Ju H X. Application of colloidal gold in protein immobilization, electron transfer, and biosensing[J]. Analytical Letters, 2003, 36(1): 1-19.
[4] Xiao Y, Patolsky F, Katz E, et al. "Plugging into enzymes": Nanowiring of redox-enzymes by a gold nanoparticle[J]. Science, 2003, 299(5614): 1877-1881.
[5] Zhao J, Zhu X, Li T, et al. Self-assembled multilayer of gold nanoparticles for ampli?ed electrochemical detection of cytochrome c[J]. Analyst, 2008, 133(9): 1242-1245.
[6] Lin J H, Zhang L J, Zhang S S. Amperometric biosensor based on coentrapment of enzyme and mediator by gold nanoparticles on indium-tin oxide electrode[J]. Analytical Biochemistry, 2007, 370(2): 180-185.
[7] Zhang L Y, Liu Y, Chen T. A mediatorless and label-free amperometric immunosensor for detection of h-IgG[J]. International Journal of Biological Macromolecules, 2008, 43(2): 165-169.
[8] Chico B, Camacho C, Perez M, et al. Polyelectrostatic immobilization of gold nanoparticles-modified peroxidase on alginate-coated gold electrode for mediatorless biosensor construction[J]. Journal of Electroanalytical Chemistry, 2009, 629(1/2): 126-132.
[9] Tanja N, Noell G. Strategies for "wiring'' redox-active proteins to electrodes and applications in biosensors, biofuel cells and nanotechnology[J]. Chemical Society Reviews, 2011, 40(7): 3564-3576.
[10] Cai C X. The direct electrochemistry of cytochrome c at a gold microband electrode modified with 4, 6-dime thyl-2- mercaptopyrimidine[J]. Journal of Electroanalytical Chemistry, 1995, 393(1/2): 119-122.
[11] Wang J X, Li M X, Shi Z J, et al. Direct electrochemistry of cytochrome c at a glassy electrode modified with single wall carbon nanotubes[J]. Analytical Chemistry, 2002, 74(9): 1933-1997.
[12] Cheng F L, Du S, Jin B K. Electrochemical studies of cytochrome c on electrodes modified by single wall carbon nanotubes[J]. Chinese Journal of Chemistry, 2003, 21(4): 436-441.
[13] Ahirwal G K, Mitra C K. Direct electrochemistry if horseradish peroxidase-gold nanoparticle conjugate[J]. Sensors, 2009, 9(2): 881-894.
[14] Zhang S, Wang N, Yu H, et al. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor[J]. Bioelectrochemistry, 2005, 67(1): 15-22.
[15] Shipway A N, Lahv M, Willner, I. Nanostructured gold colloid electrode[J]. Advanced Materials, 2000, 12(13): 993-998.
[16] Jiang X E, Zaitseva E, Schmidt M, et al. Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34): 12113-12117.
[17] Jiang X E, Engelhard M, Ataka K, et al. Molecular impact of the membrane potential on the regulatory mechanism of proton transfer in sensory rhodopsin II[J]. Journal of the American Chemical Society, 2010, 132(31): 10808-10815.
[18] Ataka K, Heberle J. Electrochemically induced surface-enhanced infrared difference absorption (SEIDA) spectroscopy of a protein monolayer[J]. Journal of the American Chemical Society, 2003, 125(17): 4986-4987.
[19] Ataka K, Heberle J. Biochemical applications of surface-enhanced infrared absorption spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2007, 388(1): 47-54.
[20] Frens G. Controlled mucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature Physical Sciences, 1973, 241(105): 20-22.
[21] Jiang X E, Ataka K, Heberle J. Influence of the molecular structure of carboxyl-terminated self-assembled monolayer on the electron transfer of cytochrome c adsorbed on an Au electrode: In situ observation by surface-enhanced infrared absorption spectroscopy[J]. Journal of Physical Chemistry C, 2008, 112(3): 813-819.
[22] Ataka K, Giess F, Knoll W, et al. Oriented attachment and membrane reconstitution of his-tagged cytochrome c oxidase to a gold electrode: In situ monitoring by surface-enhanced infrared spectroscopy[J]. Journal of the American Chemical Society, 2004, 126(49): 16199-16206.
[23] Roach P, Farrar D, Perry C C. Interpretation of protein adsorption: Surface-induced conformational changes[J]. Journal of the American Chemical Society, 2005, 127(22): 8168-8173.
[24] Chittur K C. FTIR/ATR for protein adsorption to biomaterial surfaces[J]. Biomaterials, 1998, 19(4/5): 357-369.
[25] Wu Y Q, Murayama K, Czarnik-Matusewicz B, et al. Two-dimensional attenuated total reflection/infrared correlation spectroscopy studies on concentration and heat-induced structural changes of human serum albumin in aqueous solutions[J]. Applied Spectroscopy, 2002, 56(9): 1186-1193.
[26] Grabarek Z. Gergely J. Zero-length crosslinking procedure with the use of active esters[J]. Analytical Biochemistry, 1990, 185(1): 131-135.
[27] Staros J V, Wright R W. Swingle D M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions[J]. Analytical Biochemistry, 1986, 156(1): 220-222.
[28] Timkovich R. Detection of the stable addition of carbodiimide to proteins[J]. Analytical Biochemistry, 1977, 79(1/2): 135-143.
[29] Ataka K, Heberle J. Functional vibrational spectroscopy of a cytochrome c monolayer: SEIDAS probes the interaction with different surface-modified electrodes[J]. Journal of the American Chemical Society, 2004, 126(30): 9445-9457.
文章导航

/