[1] Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. Philosophical Magazine, 1902, 4(21): 396-402.
[2] Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmon resonance[J]. Sensors Actuators, 1982-1983, 3: 79-88.
[3] Liedberg B, Nylander C. Lunstr?m I. Surface plasmon resonance for gas detection and biosensing[J]. Sensors Actuators, 1983, 4: 299-304.
[4] Homola J. Surface plasmon resonance sensors for detection of chemical and biological species[J]. Chemical Reviews, 2008, 108(2): 462-493.
[5] Shevchenko Y, Francis T J, Blair D A D, et al. In situ biosensing with a surface plasmon resonance fiber grating aptasensor[J]. Analytical Chemistry, 2011, 83(18): 7027-7034.
[6] Pelossof G, Tel-Vered R, Liu X Q, et al. Amplified surface plasmon resonance-based DNA biosensors, aptasensors, and Hg2+ sensors using hemin/G-quadruplexes and Au nanoparticles[J]. Chemistry-A European Journal, 2011, 17(32): 8904-8912.
[7] Damos F S, Luz R C S, Kubota L T. Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance[J]. Langmuir, 2004, 21(2): 602-609.
[8] Hu W, Lu Z, Liu Y, et al. In situ surface plasmon resonance investigation of the assembly process of multiwalled carbon nanotubes on an alkanethiol self-assembled monolayer for efficient protein immobilization and detection[J]. Langmuir, 2010, 26(11): 8386-8391.
[9] Forzani E S, Zhang H, Chen W, et al. Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor[J]. Environmental Science & Technology, 2004, 39(5): 1257-1262.
[10] Zhang Y, Xu M, Wang Y, et al. Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer[J]. Sensor and Actuators B: Chemical 2007, 123(2): 784-792.
[11] Miao L(缪璐), Zhang S H(张水华), Liu Z M(刘仲明). Applications of SPR biosensor in food inspection[J]. Food Science and Technology(食品科技), 2006, 31(8): 266-268.
[12] Gordon J G, Swalen J D. The effect of thin organic films on the surface plasma resonance on gold[J]. Optics Communication, 1977, 22(3): 374-376.
[13] Gordon J G, Ernst S. Surface plasmons as a probe of the electrochemical interface[J]. Surface Science, 1980, 101(1/3): 499-506.
[14] Xin Y, Gao Y, Guo J, et al. Real-time detection of Cu2+ sequestration and release by immobilized apo-metallothioneins using SECM combined with SPR[J]. Biosensors and Bioelectronics, 2008, 24(3): 369-375.
[15] Wain A J, Do H N L, Mandal H S, et al. Influence of molecular dipole moment on the redox-induced reorganization of α-helical peptide self-assembled monolayers: An electrochemical SPR investigation[J]. The Journal of Physical Chemistry C, 2008, 112(37): 14513-14519.
[16] Sriwichai S, Baba A, Deng S, et al. Nanostructured ultrathin films of alternating sexithiophenes and electropolymerizable polycarbazole precursor layers investigated by electrochemical surface plasmon resonance (EC-SPR) spectroscopy[J]. Langmuir, 2008, 24(16): 9017-9023.
[17] Panta Y M, Liu J, Cheney M A, et al. Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection[J]. Journal of Colloid and Interface Science, 2009, 333(2): 485-490.
[18] Kurita R, Nakamoto K, Ueda A, et al. Comparison of electrochemical and surface plasmon resonance immunosensor responses on single thin film[J]. Electroanalysis, 2008, 20(20): 2241-2246.
[19] Wang J, Wang F, Zou X, et al. Surface plasmon resonance and electrochemistry for detection of small molecules using catalyzed deposition of metal ions on gold substrate[J]. Electrochemistry Communications, 2007, 9(2): 343-347.
[20] Norman L L, Badia A. Electrochemical Surface plasmon resonance investigation of dodecyl sulfate adsorption to electroactive self-assembled monolayers via ion-pairing interactions[J]. Langmuir, 2007, 23(20): 10198-10208.
[21] Davis B W, Linman M J, Linley K S, et al. Unobstructed electron transfer on porous polyelectrolyte nanostructures and its characterization by electrochemical surface plasmon resonance[J]. Electrochimica Acta, 2010, 55(15): 4468-4474.
[22] Choi C H, Hillier A C. Combined electrochemical surface plasmon resonance for angle spread imaging of multielement electrode arrays[J]. Analytical Chemistry, 2010, 82(14): 6293-6298.
[23] Taranekar P, Baba A, Park J Y, et al. Dendrimer precursors for nanomolar and picomolar real-time surface plasmon resonance/potentiometric chemical nerve agent sensing using electrochemically crosslinked ultrathin films[J]. Advanced Functional Materials, 2006, 16(15): 2000-2007.
[24] Wang J, Wang F, Xu Z, et al. Surface plasmon resonance and electrochemistry characterization of layer-by-layer self-assembled DNA and Zr4+ thin films, and their interaction with cytochrome c[J]. Talanta, 2007, 74(1): 104-109.
[25] Tang H, Wang Q, Xie Q, et al. Enzymatically biocatalytic precipitates amplified antibody-antigen interaction for super low level immunoassay: An investigation combined surface plasmon resonance with electrochemistry[J]. Biosensors and Bioelectronics, 2007, 23(5): 668-674.
[26] Kretschmann E, Raether H. Radiative decay of non radiative surface plasmons excited by light[J]. Zeitschrift fuer Naturforschung A-A Journal of Physical Sciences, 1968, 23A: 2135-2136.
[27] Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift fuer Physik A: Hadrons and Nuclei, 1968, 216(4): 398-410.
[28] Sambles J R, Bradbery G W, Yang. F. Optical excitation of surface plasmons: an introduction[J]. Contemporary Physics, 1991, 32: 173-183.
[29] Smith E A, Corn R M. Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format[J]. Applied Spectroscopy, 2003, 57(11): 320A-332A.
[30] Privett B J, Shin J H. Schoenfisch M H. Electrochemical sensors[J]. Analytical Chemistry, 2008, 80(12): 4499-4517.
[31] Zhang N, Schweiss R, Zong Y, et al. Electrochemical surface plasmon spectroscopy—Recent developments and applications[J]. Electrochimica Acta, 2007, 52(8): 2869-2875.
[32] Chao F, Costa M, Tadjeddine A, et al. Study on oxidation and electrochemical reduction of gold by ellipsometry with surface-plasmon excitation[J]. Journal of Electroanalytical Chemistry, 1977, 83(1): 65-86.
[33] K?tz R, Kolb D M, Sass J K. Electron density effects in surface plasmon excitation on silver and gold electrodes[J]. Surface Science, 1977, 69(1): 359-364.
[34] Tadjeddine A, Kolb D M, K?tz R. The study of single crystal electrode surfaces by surface plasmon excitation[J]. Surface Science, 1980, 101(1/3): 277-285.
[35] Wang S, Forzani E S, Tao N. Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry[J]. Analytical Chemistry, 2007, 79(12): 4427-4432.
[36] Frasconi M, D?Annibale A, Favero G, et al. Ferrocenyl alkanethiols?thio β-cyclodextrin mixed self-assembled monolayers: Evidence of ferrocene electron shuttling through the β-cyclodextrin cavity[J]. Langmuir, 2009, 25(22): 12937-12944.
[37] Yao X, Yang M, Wang Y, et al. Study of the ferrocenylalkanethiol self-assembled monolayers by electrochemical surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 2007, 122(2): 351-356.
[38] Riskin M, Basnar B, Chegel V I, et al. Switchable surface properties through the electrochemical or biocatalytic generation of Ag0 nanoclusters on monolayer-functionalized electrodes[J]. Journal of the American Chemical Society, 2006, 128(4): 1253-1260.
[39] Baba A, Mannen T, Ohdaira Y, et al. Detection of adrenaline on poly(3-aminobenzylamine) ultrathin film by electrochemical-surface plasmon resonance spectroscopy[J]. Langmuir, 2010, 26(23): 18476-18482.
[40] Sheridan A K, Ngamukot P, Bartlett P N, et al. Waveguide surface plasmon resonance sensing: Electrochemical desorption of alkane thiol monolayers[J]. Sensors and Actuators B: Chemical, 2006, 117(1): 253-260.
[41] Kang X, Jin Y, Cheng G, et al. In situ analysis of electropolymerization of aniline by combined electrochemistry and surface plasmon resonance[J]. Langmuir, 2002, 18(5): 1713-1718.
[42] Taranekar P, Fulghum T, Baba A, et al. Quantitative electrochemical and electrochromic behavior of terthiophene and carbazole containing conjugated polymer network film precursors: EC-QCM and EC-SPR[J]. Langmuir, 2007, 23(2): 908-917.
[43] Hu W, Li C M, Cui X, et al. In situ studies of protein adsorptions on poly(pyrrole-co-pyrrole propylic acid) film by electrochemical surface plasmon resonance[J]. Langmuir, 2007, 23(5): 2761-2767.
[44] Kang X, Jin Y, Cheng G, et al. Surface plasmon resonance studies on the electrochemical doping/dedoping processes of anions on polyaniline-modified electrode[J]. Langmuir, 2002, 18(26): 10305-10310.
[45] Damos F S, Luz R C S, Kubota L T. Investigations of ultrathin polypyrrole films: Formation and effects of doping/dedoping processes on its optical properties by electrochemical surface plasmon resonance (ESPR)[J]. Electrochimica Acta, 2006, 51(7): 1304-1312.
[46] Baba A, Park M K, Advincula R C, et al. Simultaneous surface plasmon optical and electrochemical investigation of layer-by-layer self-assembled conducting ultrathin polymer films[J]. Langmuir, 2002, 18(12): 4648-4652.
[47] Jin Y, Shao Y, Dong S. Direct electrochemistry and surface plasmon resonance characterization of alternate layer-by-layer self-sssembled DNA?myoglobin thin films on chemically modified gold surfaces[J]. Langmuir, 2003, 19(11): 4771-4777.
[48] Wang F, Wang J, Chen H, et al. Assembly process of CuHCF/MPA multilayers on gold nanoparticles modified electrode and characterization by electrochemical SPR[J]. Journal of Electroanalytical Chemistry, 2007, 600(2): 265-274.
[49] Gu H, Ng Z, Deivaraj T C, et al. Surface plasmon resonance spectroscopy and electrochemistry study of 4-nitro-1,2-phenylenediamine: a switchable redox polymer with nitro functional groups[J]. Langmuir, 2006, 22(8): 3929-3935.
[50] Baba A, Lübben J, Tamada K, et al. Optical properties of ultrathin poly(3,4-ethylenedioxythiophene) films at several doping levels studied by in situ electrochemical surface plasmon resonance spectroscopy[J]. Langmuir, 2003, 19(21): 9058-9064.
[51] Toyama S, Aoki K, Kato S. SPR observation of adsorption and desorption of water-soluble polymers on an Au surface[J]. Sensors and Actuators B: Chemical, 2005, 108(1/2): 903-909.
[52] Boussaad S, Pean J, Tao N J. High-resolution multiwavelength surface plasmon resonance spectroscopy for probing conformational and electronic changes in redox proteins[J]. Analytical Chemistry, 1999, 72(1): 222-226.
[53] Yao X, Wang J, Zhou F, et al. Quantification of redox-induced thickness changes of 11-ferrocenylundecanethiol self-assembled monolayers by electrochemical surface plasmon resonance[J]. The Journal of Physical Chemistry B, 2004, 108(22): 7206-7212.
[54] Raitman O A, Katz E, Bückmann A F, et al. Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: An in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems[J]. Journal of the American Chemical Society, 2002, 124(22): 6487-6496.
[55] He L, Musick M D, Nicewarner S R, et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization[J]. Journal of the American Chemical Society, 2000, 122(38): 9071-9077.
[56] Liu J, Tian S, Tiefenauer L, et al. Simultaneously amplified electrochemical and surface plasmon optical detection of DNA hybridization based on ferrocene-streptavidin conjugates[J]. Analytical Chemistry, 2005, 77(9): 2756-2761.
[57] Dong H, Cao X, Li C M, et al. An in situ electrochemical surface plasmon resonance immunosensor with polypyrrole propylic acid film: comparison between SPR and electrochemical responses from polymer formation to protein immunosensing[J]. Biosensors and Bioelectronics, 2008, 23(7): 1055-1062.
[58] Wang L, Zhu C, Han L, et al. Label-free, regenerative and sensitive surface plasmon resonance and electrochemical aptasensors based on graphene[J]. Chemical Communications, 2011, 47(27): 7794-7796.
[59] Hu W P, Chen S J, Huang K T, et al. A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film[J]. Biosensors and Bioelectronics, 2004, 19(11): 1465-1471.
[60] Iwasaki Y, Horiuchi T, Niwa O. Detection of electrochemical enzymatic reactions by surface plasmon resonance measurement[J]. Analytical Chemistry, 2001, 73(7): 1595-1598.
[61] Gestwicki J E, Hsieh H V, Pitner J B. Using receptor conformational change to detect low molecular weight analytes by surface plasmon resonance[J]. Analytical Chemistry, 2001, 73(23): 5732-5737.
[62] Shankaran D R, Gobi K V, Sakai T, et al. Surface plasmon resonance immunosensor for highly sensitive detection of 2,4,6-trinitrotoluene[J]. Biosensors and Bioelectronics, 2005, 20(9): 1750-1756.
[63] Baba A, Taranekar P, Ponnapati R R, et al. Electrochemical surface plasmon resonance and waveguide-enhanced glucose biosensing with N-alkylaminated polypyrrole/glucose oxidase multilayers[J]. ACS Applied Materials & Interfaces, 2010, 2(8): 2347-2354.
[64] Mao Y, Bao Y, Wang W, et al. Layer-by-layer assembled multilayer of graphene/Prussian blue toward simultaneous electrochemical and SPR detection of H2O2[J]. Talanta, 2011, 85(4): 2106-2112.
[65] Assiongbon K A, Roy D. Electro-oxidation of methanol on gold in alkaline media: Adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques[J]. Surface Science, 2005, 594(1/3): 99-119.
[66] Wang J, Shao Y, Jin Y, et al. Electrochemical thinning of thicker gold film with qualified thickness for surface plasmon resonance sensing[J]. Analytical Chemistry, 2005, 77(17): 5760-5765.
[67] Zhai P, Guo J, Xiang J, et al. Electrochemical surface plasmon resonance spectroscopy at bilayered silver/gold films[J]. The Journal of Physical Chemistry C, 2006, 111(2): 981-986.
[68] Ku J R, Vidu R, Stroeve P. Mechanism of film growth of tellurium by electrochemical deposition in the presence and absence of cadmium ions[J]. The Journal of Physical Chemistry B, 2005, 109(46): 21779-21787.
[69] Kurita R, Yokota Y, Ueda A, et al. Electrochemical surface plasmon resonance measurement in a microliter volume flow cell for evaluating the affinity and catalytic activity of biomolecules[J]. Analytical Chemistry, 2007, 79(24): 9572-9576.
[70] Gupta G, Bhaskar A S B, Tripathi B K, et al. Supersensitive detection of T-2 toxin by the in situ synthesized π-conjugated molecularly imprinted nanopatterns. An in situ investigation by surface plasmon resonance combined with electrochemistry[J]. Biosensors and Bioelectronics, 2011, 26(5): 2534-2540.
[71] Nieciecka D, Krysinski P. Interactions of doxorubicin with self-assembled monolayer-modified electrodes: Electrochemical, surface plasmon resonance (SPR), and gravimetric studies[J]. Langmuir, 2011, 27(3): 1100-1107.
[72] Shan X, Patel U, Wang S, et al. Imaging local electrochemical current via surface plasmon resonance[J]. Science, 2010, 327(5971): 1363-1366.
[73] Shan X N, Wang S P, Wang W, et al. Plasmonic-based imaging of local square wave voltammetry[J]. Analytical Chemistry, 2011, 83(19): 7394-7399.
[74] Shan X N, Huang X P, Foley K J, et al. Measuring surface charge density and particle height using surface plasmon resonance technique[J]. Analytical Chemistry, 2010, 82(1): 234-240.
[75] Huang X P, Wang S P, Shan X N, et al. Flow-through electrochemical surface plasmon resonance detection of intermediate reaction products[J]. Journal of Electroanalytical Chemistry, 2010, 649(1/2): 37-41.
[76] Iwasaki Y, Horiuchi T, Morita M, et al. Electrochemical reaction of Fe(CN)63-/4-on gold electrodes analyzed by surface plasmon resonance[J]. Surface Science, 1999, 427-428: 195-198.
[77] Manesse M, Stambouli V, Boukherroub R, et al. Electrochemical impedance spectroscopy and surface plasmon resonance studies of DNA hybridization on gold/SiOx interfaces[J]. Analyst, 2008, 133(8): 1097-1103.
[78] Szunerits S, Knorr N, Calemczuk R, et al. New approach to writing and simultaneous reading of micropatterns: Combinating surface plasmon resonance imaging with scanning electrochemical microscopy (SECM)[J]. Langmuir, 2004, 20(21): 9236-9241.