欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究简报

四氧化三铁/碳的制备与电化学性能研究

  • 蔡俊杰 ,
  • 姚姝 ,
  • 李泽胜 ,
  • 孟辉 ,
  • 沈培康
展开
  • 中山大学 光电材料与技术国家重点实验室,广东省低碳化学与过程节能重点实验室,物理科学与工程技术学院,广东 广州 510275

收稿日期: 2011-12-20

  修回日期: 2012-01-14

  网络出版日期: 2012-02-01

基金资助

国家自然科学基金(No. 21073241, No. U1034003)资助

Electrochemical Performance of Fe3O4/C Composites as Negative Material for Lithium-ion Batteries

  • CAI Jun-Jie ,
  • YAO Shu ,
  • LI Ze-Sheng ,
  • MENG Hui ,
  • SHEN Pei-Kang
Expand
  • State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Low-carbon Chemistry & Energy Conservation, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China

Received date: 2011-12-20

  Revised date: 2012-01-14

  Online published: 2012-02-01

摘要

应用共沉淀法并以原位聚合苯胺包覆四氧化三铁作碳源制备四氧化三铁/碳的复合材料.XRD、SEM、TEM 等测试显示,样品中四氧化三铁纳米颗粒(40 ~ 80 nm)均匀的分散在无定形碳的内部.在50 mA?g-1 的电流密度下,经过30循环充放电测试,该材料的容量仍保持在1000 mAh?g-1左右.

本文引用格式

蔡俊杰 , 姚姝 , 李泽胜 , 孟辉 , 沈培康 . 四氧化三铁/碳的制备与电化学性能研究[J]. 电化学, 2013 , 19(1) : 89 -92 . DOI: 10.61558/2993-074X.2940

Abstract

The Fe3O4/Carbon composites have been synthesized through coprecipitation pathway and by insitu aniline polymerization as a carbon source. Structural characterization and morphological study of the composites were investigated by using XRD, SEM and TEM techniques. The results showed that the nanosized Fe3O4 particles (40 ~ 80 nm) were encapsulated in the amorphous carbon. During the electrochemical tests, the Fe3O4/C composites exhibited high capaticity and excellent cycle ability, the retention of capaticity was about 1000 mAh?g-1 after 30 cycles of charge/discharge tests at 50 mA?g-1.

参考文献

[1] Scrosati B. Recent advances in lithium ion battery materials [J]. Elecrtochimica Acta, 2000, 45 (8): 2461-2466.
[2] Broussely M. Lithiun batteries R&D activities in Europe [J]. Journal of Power Sources, 1999, 81-82: 137-139.
[3] Owens B B, Smyrl W H, Xu J J. R&D on lithium batteries in the USA: high-energy electrode materials [J]. Journal of Power Sources, 1999, 81-82: 150-155.
[4] Mitra S, Poizot P, Finke A, et al. Growth and electrochemical characterization versus lithium of Fe3O4 electrodes made by electrodeposition [J]. Advanced Functional Materials, 2006, 16(17): 2281-2287.
[5] Taberna P L, Mitra S, Poizot P, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications [J]. Nature Materials, 2006, 5(7): 567-573.
[6] Debart A, Dupont L, Poizot P, et al. Transmission electron microscopy study of the reactivity mechanism of tailor-Made CuO particles toward Lithium [J]. Journal of The Electrochemical Society, 2001, 148(11): A1266-A1274
[7] Balaya P, Li H, Kienle L, et al. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J]. Advanced Functional Materials, 2003, 13(8): 621-625.
[8] Delmer O, Balaya P, Kienle L, et al. Enhanced potential of amorphous electrode materials: case study of RuO2 [J]. Advanced Materials, 2008, 20(3): 501-505.
[9] Yuan S M, Li J X, Yang L T, et al. Preparation and lithium storage performances of mesoporous Fe3O4@C microcapsules [J]. ACS Applied Materials & Interfaces 2011, 3(3): 705-709.
[10] Zhou G M, Wang D W, Li F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries [J]. Chemistry of Materials, 2010, 22(18): 5306-5313.
[11] Muraliganth T, Murugan A V, Manthiram A. Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries [J]. Chemical Communications, 2009, 47: 7360-7362.
[12] Lou X W, Li C M and Archer L A A. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage [J]. Advanced Materials, 2009, 21(24): 2536-2539.
[13] Hu Y S, Rezan D C, Titirici M M, et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries [J]. Angewandte Chemie International Edition, 2008, 47(9): 1645-1649.
[14] Yuan S M, Zhou Z and Li G. Structural evolution from mesoporous α-Fe2O3 to Fe3O4@C and γ-Fe2O3 nanospheres and their lithium storage performances [J]. CrystEngComm, 2011, 13(14): 4709-4713.
文章导航

/