欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

溶剂热法球状Ni3S4制备及其在超级电容器的应用

  • 郇庆娜 ,
  • 焦丽芳 ,
  • 王庆红 ,
  • 杜红梅 ,
  • 杨加芹 ,
  • 彭文修 ,
  • 王一菁 ,
  • 袁华堂
展开
  • 南开大学 新能源材料化学研究所,先进能源材料化学教育部重点实验室,天津300071

收稿日期: 2011-12-05

  修回日期: 2011-12-12

  网络出版日期: 2012-01-05

基金资助

国家自然科学基金(51171083, 51071087, 50971071)和长江学者创新团队(IRT 0927)资助

Synthesis of Spherical Ni3S4 by Solvothermal Method as Supercapacitor Electrodes

  • HUAN Qing-Na ,
  • JIAO Li-Fang ,
  • WANG Qing-Hong ,
  • DU Hong-Mei ,
  • YANG Jia-Qin ,
  • PENG Wen-Xiu ,
  • WANG Yi-Jing ,
  • YUAN Hua-Tang
Expand
  • Institute of New Energy and Material Chemistry,Key Laboratory of Advanced Energy Materials Chemistry-Ministry of Education,Nankai University,Tianjin 300071,China

Received date: 2011-12-05

  Revised date: 2011-12-12

  Online published: 2012-01-05

摘要

应用溶剂热法合成Ni3S4微米球,采用XRD和SEM表征样品物相结构、观察其微观形貌. 电化学性能测试表明Ni3S4电极有较好的比电容性能,0.5和4 A?g-1放电电流密度下,其比容量分别为1120.6和433.4 F?g-1. 1000周循环充放电后,其容量保持率为89.37 %和84.88 %. 通过XRD、XPS和CV测试,结果表明其电化学反应机理为Ni(OH)2与NiOOH的相互转化.

本文引用格式

郇庆娜 , 焦丽芳 , 王庆红 , 杜红梅 , 杨加芹 , 彭文修 , 王一菁 , 袁华堂 . 溶剂热法球状Ni3S4制备及其在超级电容器的应用[J]. 电化学, 2012 , 18(3) : 274 -277 . DOI: 10.61558/2993-074X.2915

Abstract

The Ni3S4 microspheres have been synthesized via a facile solvothermal method. The crystal structure and surface morphology are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Microspherical Ni3S4 exhibits good electrochemical capacitance validated by electrochemical measurements. The specific capacities of 1120.6 F.g-1 at 0.5 A.g-1 and 433.4 F.g-1 at 4 A.g-1 with the capacitance retention of 89.37 % and 84.88 % were obtained after 1000 cycles, respectively. The electrochemical reaction is expected due to the transformation of Ni(OH)2 and NiOOH based on the XRD, XPS and CV analysis results.

参考文献

[1] Conway B E. Electrochemical Supercapacitors, scientific fundamentals and technological applications [M]. New York: Kluwer Academic/Plenum Press, 1999.
[2] Arbizzani C, Mastragostino M, Soavi F. New trends in electrochemical supercapacitors [J]. Journal of Power Sources, 2001, 100(1/2): 164-170.
[3] Colin A V, Bruno S. Modern batteries: an introduction to electrochemical power sources [M]. London: Arnold Press, 1997.
[4] Lang J V, Kong L B, Wu W J, et al. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors [J]. Chemical Communications, 2008(35): 4213-4215.
[5] Lv W, Sun F, Tang D M, et al. A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance [J]. Journal of Materials Chemistry, 2011, 21(25): 9014-9019.
[6] Wu M S, Huang Y A, Yang C H, et al. Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors [J]. International Journal of Hydrogen Energy, 2007, 32(17): 4153-4159.
[7] Jeong Y U, Manthiram A. Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes [J]. Journal of The Electrochemical Society, 2002, 149(11): 1419-1422.
[8] Ragupathy P, Park D H, Campet G, et al. Remarkable Capacity Retention of Nanostructured Manganese Oxide upon Cycling as an Electrode Material for Supercapacitor [J]. Journal of Physical Chemistry C, 2009, 113(15): 6303-6309.
[9] Yang G W, Xu C L, Li H L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance [J]. Chemical Communications, 2008(48): 6537-6539.
[10] Jiang H, Zhao T, Li C Z, et al. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors [J]. Journal of Materials Chemistry, 2011, 21(11): 3818-3823.
[11] Li B J, Ai M, Xu Z. Mesoporous β-Ni(OH)2: synthesis and enhanced electrochemical performance [J]. Chemical Communications, 2010, 46(34): 6267-6269.
[12] Bao S J, Li C M, Guo C X, et al. Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors [J]. Journal of Power Sources, 2008, 180(1): 676-681.
[13] Tao F, Zhao Y Q, Zhang G Q, et al. Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors [J]. Electrochemistry Communications, 2007, 9(6): 1282-1287.
[14] Justin P, Rao G R. CoS spheres for high-rate electrochemical capacitive energy storage application [J]. International Journal of Hydrogen Energy, 2010, 35(18): 9709-9715.
[15] Jayalakshmi M, Rao M M, Choudary B M. Identifying nano SnS as a new electrode material for electrochemical capacitors in aqueous solutions [J]. Electrochemistry Communications, 2004, 6(11): 1119-1122.
[16] Jayalakshmi M, Rao M M. Synthesis of zinc sulphide nanoparticles by thiourea hydrolysis and their characterization for electrochemical capacitor applications [J]. Journal of Power Sources, 2006, 157(1): 624-629.
[17] Yang L X, Zhu Y J, Tong H, et al. Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol [J]. Journal of Solid State Chemistry, 2007, 180(7): 2095-2101.
[18] Park K W, Choi J H, Kwon B K, et al. Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation [J]. Journal of Physical Chemistry B, 2002, 106(8): 1869-1877.
[19] Cao L, Kong L B, Liang Y Y, et al. Preparation of novel nano-composite Ni(OH)2/USY material and its
application for electrochemical capacitance storage [J]. Chemical Communications, 2004(14): 1646-1647.
[20] Wang S H(王淑红), Sun H Y(孙虹燕), Bai X D(白续铎), et al. Study on the hybrid supercapacitor based on
Ni(OH)2/activated carbon [J]. Journal of Natural Science of Heilongjiang University (黑龙江大学自然科学学报), 2005, 22(1): 78-80.
文章导航

/