欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

复合材料xLiFePO4·yLi3V2(PO4)3的合成及电化学性能(英文)

  • 马平平 ,
  • 刘志坚 ,
  • 夏建华 ,
  • 陈宇 ,
  • 胡朴 ,
  • 卢志超 ,
  • 夏定国
展开
  • 1.中国钢研科技集团公司,北京 100081;2.北京中新联数码科技有限公司,北京 100041;3.北京大学工学院,北京 100871

收稿日期: 2011-09-28

  修回日期: 2011-10-28

  网络出版日期: 2011-11-30

基金资助

This work was financially supported by National High Technology Research and Development Program of China (No. 2008AA03Z208)

Synthesis and electrochemical performance of xLiFePO4·yLi3V2(PO4)3 composites

  • MA Ping-Ping ,
  • LIU Zhi-Jian ,
  • XIA Jian-Hua ,
  • CHEN Yu ,
  • HU Pu ,
  • LU Zhi-Chao ,
  • XIA Ding-Guo
Expand
  • 1. China Iron and Steel Research Institute Group, Beijing 100081, China; 2. Beijing Central Press Union Technology Co LTD., Beijing 100041, China; 3. College of Engineering, Peking University, Beijing 100871, China

Received date: 2011-09-28

  Revised date: 2011-10-28

  Online published: 2011-11-30

Supported by

This work was financially supported by National High Technology Research and Development Program of China (No. 2008AA03Z208)

摘要

采用固相法合成了不同比例的xLiFePO4·yLi3V2(PO4)3 复合物. 利用XRD、SEM和电化学测试仪等分析方法表征了所有样品的特性. 结果表明,样品0.95LiFePO4·0.05Li3V2(PO4)3 以0.2 C的充放电倍率放电时具有162.7 mAh/g的电化学容量,同时该样品表现出了较其它样品更优异的循环稳定性和更良好的导电性能,不同倍率下循环60周后,其容量保持率高达98.7%. 颗粒细小的尺寸和均一的分布使得样品0.95LiFePO4?0.05Li3V2(PO4)3具有良好的电化学性能.

本文引用格式

马平平 , 刘志坚 , 夏建华 , 陈宇 , 胡朴 , 卢志超 , 夏定国 . 复合材料xLiFePO4·yLi3V2(PO4)3的合成及电化学性能(英文)[J]. 电化学, 2012 , 18(1) : 31 -36 . DOI: 10.61558/2993-074X.2876

Abstract

A series of xLiFePO4·yLi3V2(PO4)3 composites were systematically synthesized through solid state reactions by variations in the proportions of LiFePO4 and Li3V2(PO4)3. The properties of the prepared compounds were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. The capacity of 162.7 mAh/g at 0.2 C rate was obtained with the relatively good cycle stability and good conductivity for 0.95LiFePO4·0.05Li3V2(PO4)3 due to more uniformed distributed and smaller particle sizes.

参考文献

[1] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of The Electrochemical Society, 1997, 144(4): 1188-1194.
[2] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Materials, 2002, 1(2): 123-128.
[3] Li T (李婷), Qian J F (钱江峰), Cao Y L (曹余良), et al. Electrochemical Performance of Li1-xMxFePO4 Cathode Materials Synthesized by Polymer Pyrolysis Poute[J]. Journal of Electrochemistry (电化学), 2007, 13(2): 136-139.
[4] Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemical and Solid-State Letters, 2001, 4(1): A170-A172.
[5] Franger S, Cras F L, Bourbon C, et al. LiFePO4 synthesis routes for enhanced electrochemical performance[J]. Electrochemical and Solid-State Letters, 2002, 5(10): A231-A233.
[6] Herle P S, Ellis B, Coombs N, et al. Nano-network electronic conduction in iron and nickel olivine phosphates[J]. Nature Materials, 2004, 3(3): 147-152.
[7] Croce F, Epifanio A D, Hassoun J, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode[J]. Electrochemical and Solid-State Letters, 2002, 5(3): A47-A50.
[8] Park K S, Son J T, Chung H T, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4 [J]. Solid State Communications, 2004, 129(5): 311-314.
[9] Yamada,A.; Chung, S. C. Crystal chemistry of the olivine-type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as possible 4 V cathode materials for lithium batteries[J]. Journal of The Electrochemical Society, 2001, 148(8): A960-A967.
[10] Wang G X, Bewlay S, Yao J, et al. Characterization of LiMxFe1-xPO4 (M=Mg, Zr, Ti) cathode materials prepared by the sol-gel method[J]. Electrochemical and Solid-State Letters, 2002, 7(12): A503-A506.
[11] Ren M M, Zhou Z, Li Y Z, et al. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1357-1362.
[12] Barker J, Gover R K B, Burns P, et al. The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate, Li3V2(PO4)3[J]. Journal of The Electrochemical Society, 2007, 154(4): A307-A313.
[13] Zheng J C, Li X H, Wang Z X. LiFePO4 with enhanced performance synthesized by a novel synthetic route[J]. Journal of Power Sources, 2008, 184(2): 574-577.
[14] Sun C S, Zhou Z, Xu Z G, et al. Improved high-rate charge/discharge performances of LiFePO4 via V-doping[J]. Journal of Power Sources, 2009, 193(2): 841-845.
[15] Liu K Y (刘开源), Huang J S (黄建书), Yang L(杨立). Effects of different carbon sources on performance of Li3V2(PO4)3/C composite cathode materials[J]. Journal of Electrochemistry (电化学), 2010, 16(1): 30-34.
[16] Wang L N, Li Z C, Xu H J, et al. Studies of Li3V2(PO4)3 additives for the LiFePO4 based Li ion batteries[J]. The Journal of Physical Chemistry C, 2008, 112(1): 308-312.
[17] Yang M R, Ke W H, Wu S H. Improving electrochemical properties of lithium iron phosphate by addition of vanadium[J]. Journal of Power Sources, 2007, 165 (2): 646-650.
[18] Zhao T, Xu W, Ye Q, et al. Local structure of vanadium in doped LiFePO4[J]. Journal of Synchrotron Radiation, 2010, 17: 584-589.
[19] Zheng J C, Li X H, Wang Z X, et al. Novel synthesis of LiFePO4 -Li3V2(PO4)3 a composite cathode material by aqueous precipitation and lithiation[J]. Journal of Power Sources, 2010, 195(9): 2935-2938.
[20] Bai Y (白莹), Yang J M (杨觉明), Qing C B (卿春波), et al. Electrochemical Performances of C-Coating and Co-Doping LiFePO4[J]. Journal of Electrochemistry (电化学), 2011, 17(3): 334-338.
[21] Chen Y (陈宇), Wang Z L (王忠丽), Yu C Y (于春阳), et al. Electrochemical properties of Mo-doped LiFePO4 cathode material[J]. Acta Physico-Chimica Sinica (物理化学学报), 2008, 24(8): 1498-1502.
[22] Saidi M Y, Barker J, Huang H, et al. Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2002, 5(7): A149-A151.
[23] Zheng J C, Li X H, Wang Z X, et al. Characteristics of xLiFePO4 center dot yLi3V2(PO4)3 electrodes for lithium batteries[J]. Ionics, 2009, 15(6): 753-759.
[24] Yamada A, Koizumi H, Nishimura S, et al. Room-temperature miscibility gap in LixFePO4[J]. Nature Materials, 2006, 5(5): 357-360.
[25] Meethong N, Huang H Y, Speakman S A, et al. Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries[J]. Advanced Functional Materials, 2007, 17(7): 1115-1123.
文章导航

/