欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

有机模板剂辅助喷雾干燥法制备LiFePO4/C正极材料及其电化学性能研究

  • 刘全兵 ,
  • 蒋阳梅 ,
  • 宋慧宇 ,
  • 廖世军
展开
  • 华南理工大学 化学与化工学院,广东省燃料电池技术重点实验室,广东 广州 510641

收稿日期: 2011-09-06

  修回日期: 2011-09-26

  网络出版日期: 2011-10-30

基金资助

国家自然科学基金( Nos. 20876062,21076089)资助

Preparation and Electrochemical Performance of LiFePO4/C by Spray Drying Method Assisted with Organic Template

  • LIU Quan-Bing ,
  • JIANG Yang-Mei ,
  • SONG Hui-Yu ,
  • LIAO Shi-Jun
Expand
  • School of Chemistry and Chemical Engineering, South China University of Technology, Key Lab for Fuel Cell Technology of Guangdong Province, Guangzhou 510641, China

Received date: 2011-09-06

  Revised date: 2011-09-26

  Online published: 2011-10-30

摘要

采用有机物辅助模板剂,经喷雾干燥制得LiFePO4/C复合正极材料,考察了不同模板剂对材料的形貌和性能的影响。采用X射线衍射 (XRD)、扫描电镜(SEM)表征与观察样品,采用交流阻抗(EIS)、循环伏安(CV)和恒电流充放电测试电极性能。结果表明:样品形貌和结构可通过添加不同有机模板剂来调变,无模板剂时得到的样品是光滑实心球,聚乙烯醇(PVA)、柠檬酸和葡萄糖有机模板机可制得纳米颗粒团聚成的均匀微米球形、多孔球形和鸟巢状样品。其中以PVA为辅助模板剂制得的LiFePO4/C电极,其电荷转移电阻和比容量都较最优异。该样品在0.1 C和5 C倍率下放电比容量分别达156.7和92.1 mAh g-1,并呈现出的大倍率充放电平台及优良的倍率循环性能。

本文引用格式

刘全兵 , 蒋阳梅 , 宋慧宇 , 廖世军 . 有机模板剂辅助喷雾干燥法制备LiFePO4/C正极材料及其电化学性能研究[J]. 电化学, 2012 , 18(1) : 18 -23 . DOI: 10.61558/2993-074X.2874

Abstract

In this work, the LiFePO4/C composites were prepared by the spray drying and carbothermal method, and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The effects of the organic assisted templates on the morphologies and electrochemical properties of the LiFePO4/C composites were investigated. The results showed that the morphology and microstructure of the composites could be tuned by incorporating with the different templates. The morphology of the composite appeared to be solid microspheres if no organic template was added, while porous microspheres, nest-like aggregation, and uniform nano-micro spheres, if citric acid, glucose, and PVA were used as the templates, respectively. Among all the samples, the composite prepared with PVA as a template also exhibited the best properties in batteries, including the highest tap density, the lowest charge transfer resistances and the highest capacities. The best discharge capacities were measured to be 156.7 and 92.1 mAh?g–1 at 0.1 and 5.0 C rate, respectively. The obvious charge-discharge plateaus at high rates and excellent cycling performance at various rates were achieved.

参考文献

[1] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J Electrochem Soc, 1997, 144(4): 1188-1194.
[2] Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates [J]. J Electrochem Soc, 1997, 144(5): 1609-1613.
[3] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nat Mater, 2002, 1(2): 123-128.
[4] Prosini P P, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics, 2002, 148(1-2): 45-51.
[5] Chen Z H, Dahn J R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J]. J Electrochem Soc, 2002, 149(9): A1184-A1189.
[6] Choi D, Kumta P N. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J]. J Power Sources, 2007, 163(2): 1064-1069.
[7] Delacourt C, Poizot P, Levasseur S, et al. Size effects on carbon-free LiFePO4 powders [J]. Electrochem Solid St, 2006, 9(7): A352-A355.
[8] Zheng Ming-sen(郑明森), Liu Shan-ke(刘善科), Sun Shi-gang(孙世刚), et al. Cu doping LiFePO4 and its electrochemical performance [J]. Electrochemistry(电化学), 2008, 14(1): 1-5.
[9] Lu J B, Tang Z L, Le B, et al. Structure and electrochemical properties of LiFePO4 as the cathode of lithium ion battery [J]. Chem J Chinese U(高等化学学报), 2005, 26(11): 2093-2096.
[10] Dominko R, Bele M, Gaberscek M, et al. Porous olivine composites synthesized by sol-gel technique [J]. J Power Sources, 2006, 153(2): 274-280.
[11] Cai Y, Li Z J, Zhang H L, et al. 1-Alkyl-2,3-dimethylimidazolium bis (trifluoromethanesul -fonyl) imide ionic liquids as highly safe electrolyte for Li/LiFePO4 battery [J]. Electrochim Acta, 2010, 55(16): 4728-4733.
[12] Zou Hong-li(邹红丽), Zhang Guang-hui(张光辉), Shen Pei-kang(沈培康). Hydrothermal reduction synthesis of LiFePO4 and its electrochemical performance [J]. Electrochemistry(电化学), 2010, 16(4): 416-419.
[13] Saravanan K, Reddy M V, Balaya P, et al. Storage performance of LiFePO4 nanoplates [J]. J Mater Chem, 2009, 19(5): 605-610.
[14] Xu C B, Lee J, Teja A S. Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water [J]. J Supercrit Fluid, 2008, 44(1): 92-97.
[15] Gomez L S, de Meatza I, Martin M I, et al. Morphological, structural and electrochemical properties of lithium iron phosphates synthesized by Spray Pyrolysis [J]. Electrochim Acta, 2010, 55(8): 2805-2809.
[16] Xie H, Zhou Z T. Physical and electrochemical properties of mix-doped lithium iron phosphate as cathode material for lithium ion battery [J]. Electrochim Acta, 2006, 51(10): 2063-2067.
[17] Yu F, Zhang J J, Yang Y F, et al. Preparation and characterization of mesoporous LiFePO4/C microsphere by spray drying assisted template method [J]. J Power Sources, 2009, 189(1): 794-797.
[18] Yu F, Zhang J J, Yang Y F, et al. Up-scalable synthesis, structure and charge storage properties of porous microspheres of LiFePO4@C nanocomposites [J]. J Mater Chem, 2009, 19(48): 9121-9125.
[19] Ju S H, Kang Y C. LiFePO4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution containing nano-sized carbon black [J]. Mater Chem Phys, 2008, 107(2-3): 328-333.
[20] Konstantinov K, Bewlay S, Wang G X, et al. New approach for synthesis of carbon-mixed LiFePO4 cathode materials [J]. Electrochim Acta, 2004, 50(2-3): 421-426.
[21] Bewlay S L, Konstantinov K, Wang G X, et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source [J]. Mater Lett, 2004, 58(11): 1788-1791.
[22] Dominko R, Bele M, Goupil J M, et al. Wired porous cathode materials: A novel concept for synthesis of LiFePO4 [J]. Chem Mater, 2007, 19(12): 2960-2969.
[23] Hu Y S, Guo Y G, Dominko R, et al. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect [J]. Adv Mater, 2007, 19(15): 1963-1966.
[24] Jiang T, Pan W, Wang J, et al. Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol-gel method [J]. Electrochim Acta, 2010, 55(12): 3864-3869.
[25] Huang B, Zheng X D, Jia D M, et al. Design and synthesis of high-rate micron-sized, spherical LiFePO4/C composites containing clusters of nano/microspheres [J]. Electrochim Acta, 2010, 55(3): 1227-1231.
[26] Hwang B J, Hsu K F, Hu S K, et al. Template-free reverse micelle process for the synthesis of a rod-like LiFePO4/C composite cathode material for lithium batteries [J]. J Power Sources, 2009, 194(1): 515-519.
[27] Yu F, Zhang J, Yang Y, et al. Porous micro-spherical aggregates of LiFePO4/C nanocomposites: A novel and simple template-free concept and synthesis via sol-gel-spray drying method [J]. J Power Sources, 2010, 195(19): 6873-6878.
[28] Gao F, Tang Z Y. Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries [J]. Electrochim Acta, 2008, 53(15): 5071-5075.
文章导航

/