欢迎访问《电化学(中英文)》期刊官方网站,今天是
化学-生物传感技术近期研究专辑(上海师范大学 章宗穰教授主编)

基于核酸分子识别的电化学分析方法与应用

  • 周殿明 ,
  • 蒋健晖 ,
  • 沈国励 ,
  • 俞汝勤
展开
  • 化学生物传感与计量学国家重点实验室,湖南大学化学化工学院,湖南 长沙 410082

收稿日期: 2011-06-07

  修回日期: 2011-08-01

  网络出版日期: 2011-08-09

基金资助

国家自然科学基金(21025521, 21035001, 20875027)

Electrochemical Analysis based on Molecular Recognition of Nucleic Acids and its Applications

  • ZHOU Dian-Ming ,
  • JIANG Jian-Hui ,
  • SHEN Guo-Li ,
  • YU Ru-Qin
Expand
  • State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082,China

Received date: 2011-06-07

  Revised date: 2011-08-01

  Online published: 2011-08-09

摘要

核酸作为生物体遗传信息的载体以及分子生物学和生物分析化学中重要的功能分子,近年来在电化学分析中受到了越来越多的重视。本文以作者所在研究组的工作为实例,对核酸分子识别的电化学分析方法作出简要的评述,内容涉及核酸序列和基因变异的电化学分析以及核酸作为功能分子进行识别检测的电化学分析等等。

本文引用格式

周殿明 , 蒋健晖 , 沈国励 , 俞汝勤 . 基于核酸分子识别的电化学分析方法与应用[J]. 电化学, 2011 , 17(3) : 242 -248 . DOI: 10.61558/2993-074X.2838

Abstract

Nucleic acid as the carrier of genetic information and the functional molecules for molecular biology and bioanalytical chemistry has attracted increasing interest in electrochemical analysis. This review presents a brief outline of some electrochemical analytical assays based on molecular recognition of nucleic acids. Most of these methods are focused on the detection of nucleic acid sequence, genetic mutation and nucleic acids as functional molecules.

参考文献

[1] Fan C H, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA[J]. PNAS, 2003, 100: 9134-9137.
[2] Xiao Y, Lubin A A, Baker B R, et al. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex[J]. PNAS , 2006, 103 (45): 16677-16680.
[3] Zhang Y L, Wang Y, Wang H B, et al. Electrochemical DNA biosensor based on the proximity-dependent surface hybridization assay[J]. Anal Chem, 2009, 81: 1982-1987.
[4] Zhang J, Song S P, Zhang L Y, et al. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes[J]. J Am Chem Soc, 2006, 128: 8575-8580.
[5] Patolsky F, Lichtenstein A, Willner I. Highly sensitive amplified electronic detection of DNA by biocatalyzed precipitation of an insoluble production to electrodes[J]. Chem Eur J, 2003, 9: 1137-1145.
[6] Mao X, Jiang J H, Xu X M, et al. Enzymatic ampli?cation detection of DNA based on “molecular beacon” biosensors[J]. Biosens Bioelectron, 2008, 23: 1555-1561.
[7] Kruglyak L, Nickerson D A. Variation is the spice of life[J]. Nat Genet, 2001, 27: 234-236.
[8] Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genomesequence variation containing 1.42 million single nucleotide polymorphisms[J]. Nature, 2001, 409: 928–933.
[9] Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome[J]. Science, 2001, 291: 1304–1351.
[10] Wu Z S, Jiang J H, Shen G L, et al. Highly sensitive DNA detection and point mutation identification: an electrochemical approach based on the combined use of ligase and reverse molecular beacon[J]. Hum Mutat, 2007, 28: 630-637.
[11] Huang Y, Zhang Y L, Xu X M, et al. Highly speci?c and sensitive electrochemical genotyping via gap ligation reaction and surface hybridization detection[J]. J Am Chem Soc, 2009, 131: 2478-2480.
[12] Zhang S B, Wu Z S, Shen G L, et al. A label-free strategy for SNP detection with high ?delity and sensitivity based on ligation-rolling circle ampli?cation and intercalating of methylene blue[J]. Biosens Bioelectron, 2009, 24: 3201-3207.
[13] Feng K J, Zhao J J, Wu Z S, et al. High-sensitive electrochemical detection of point mutation based on polymerization-induced enzymatic ampli?cation[J]. Biosens Bioelectron, 2011, 26: 3187-3191.
[14] Hu R, Wu Z S, Zhang S B, et al. Robust electrochemical system for screening single nucleotide polymorphisms[J]. Chem Commun, 2011, 47: 1294-1296.
[15] Chen H, Liu X J, Liu Y L, et al. Electro- chemical scanning of DNA point mutations via MutS protein-mediated mismatch recognition[J]. Biosens Bioelectron, 2009, 24: 1955-1961.
[16] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346: 818-822.
[17] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249: 505-510.
[18] Xiao Y, Lubin A A, Heeger A J, et al. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor[J]. Angew Chem Int Ed, 2005, 44: 5456-5459.
[19] Wu Z S, Zheng F, Shen G L, et al. A hairpin aptamer-based electrochemical biosensing platform for the sensitive detection of proteins[J]. Biomaterials, 2009, 30: 2950-2955.
[20] Wu Z S, Chen C R, Shen G L, et al. Reversible electronic nanoswitch based on DNA G-quadruplex conformation: a platform for single-step, reagentless potassium detection[J]. Biomaterials, 2008, 29: 2689–2696.
[21] Zhang S B, Hu R, Hu P, et al. Blank peak current-suppressed electrochemical aptameric sensing platform for highly sensitive signal-on detection of small molecule[J]. Nueleic Acids Res, 2010, 38: e185.
[22] He J L, Yang Y F, Shen G L, et al. Electrochemical aptameric sensor based on the Klenow fragment polymerase reaction for cocaine detection[J]. Biosens Bioelectron, 2011, 26: 4222-4226.
[23] Wu Z S, Guo M M, Zhang S B, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers[J]. Anal Chem, 2007, 79: 2933-2939.
[24] Zhang Y L, Huang Y, Jiang J H, et al. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection[J]. J Am Chem Soc, 2007, 129: 15448-15449.
[25] Zhou L, Ou L J, Chu X, et al. Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein[J]. Anal Chem, 2007, 79: 7492-7500.
[26] Gong H, Li X H. Y-type, C-rich DNA probe for electrochemical detection of silver ion and cysteine[J]. Analyst, 2011, 136: 2242-2246.
[27] Ono A, Cao S Q, Togashi H, et al. Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes[J]. Chem Commun, 2008: 4825-4827.
[28] Miyake Y, Togashi H, Tashiro M, et al. MercuryII-mediated formation of thymine HgII thymine base pairs in DNA duplexes[J]. J Am Chem Soc, 2006, 128: 2172-2173.
[29] Tanaka Y, Oda S, Yamaguchi H, et al. 15N-15N J-coupling across HgII: direct observation of HgII-mediated T-T base pairs in a DNA duplex[J]. J Am Chem Soc, 2007, 129: 244-245.
[30] Liu S J, Nie H G, Jiang J H, et al. Electrochemical sensor for mercury(II) based on conformational switch mediated by interstrand cooperative coordination[J]. Anal Chem, 2009, 81: 5724-5730.
[31] Wu D H, Zhang Q, Chu X, et al. Ultrasensitive electrochemical sensor for mercury(II) based on target-induced structure-switching DNA[J]. Biosens Bioelectron, 2010, 25: 1025-1031.
[32] Kong R M, Zhang X B, Zhang L L, et al. An ultrasensitive electrochemical ‘‘turn-on’’ label-free biosensor for Hg2+ with AuNP-functionalized reporter DNA as a signal ampli?er[J]. Chem Commun, 2009: 5633-5635.
[33] Zhang Z P, Tang A M, Liao S Z, et al. Oligonucleotide probes applied for sensitive enzyme-ampli?ed electrochemical assay of mercury(II) ions[J]. Biosens Bioelectron, 2011, 26: 3320-3324.
[34] Wu Z, Zhen Z, Jiang J H, et al. Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly[J]. J Am Chem Soc, 2009, 131: 12325-12332.
文章导航

/