欢迎访问《电化学(中英文)》期刊官方网站,今天是
化学-生物传感技术近期研究专辑(上海师范大学 章宗穰教授主编)

与生物医学植入器件中的神经电刺激过程相关的电化学研究(英文)

展开
  • Second Sight Medical Products, Inc., CA, USA

收稿日期: 2011-06-07

  修回日期: 2011-07-11

  网络出版日期: 2011-07-25

Electrochemistry in Neural Stimulation by Biomedical Implants

Expand
  • Second Sight Medical Products, Inc., CA, USA

Received date: 2011-06-07

  Revised date: 2011-07-11

  Online published: 2011-07-25

摘要

生物医学工程、微电子加工技术和神经科学的进展推动了用于神经电刺激的新型和先进的生物医学器件的问世,使各类患者的某些感官功能得以恢复,并改善了患者的生活质量.在这些生物医学器件中,人工耳蜗植入器件、人工视觉植入器件、深层脑部刺激器件和脊髓刺激器件都取得了很大进展.刺激电极是生物医学植入器件中的关键部件之一.当刺激电极与活体组织相接触时,形成了电子器件和生物体组织间的接触界面.本文首先以耳蜗植入器件和视觉植入器件为例,简要介绍了生物医学植入器件的工作原理和现状.在此基础上,着重对神经电刺激器件所涉及的电化学概念、测试方法及其进展进行了评述.介绍了电刺激和电极/活体组织界面上电荷注入的基本原理和机制.也对常用的电极材料和微电极加工技术进行了评介.讨论了植入式器件研发过程中所遇到的与电化学相关的挑战,诸如电极反应、电极阻抗、电荷注入容量、微电极阵列、电极腐蚀以及生物兼容性等.此外,也讨论了微型传感器和微型生物传感器在植入式器件中的应用前景.刺激电极长期处于活体组织内的苛刻条件下会渐渐失效,腐蚀、氧化和脱壳等情况的出现都会降低器件的使用寿命,甚至危及机体.本文也对此进行了讨论.对设计和加工所面临挑战的清醒认识促使包括电化学家在内的多学科专家和工程技术人员共同努力,以推进神经刺激生物医学植入器件的长足进展和实际应用,使感官功能失效的患者得以受惠.

本文引用格式

周道民, Robert Greenberg . 与生物医学植入器件中的神经电刺激过程相关的电化学研究(英文)[J]. 电化学, 2011 , 17(3) : 249 -262 . DOI: 10.61558/2993-074X.2092

Abstract

Advances in biomedical engineering, micro-fabrication technology, and neuroscience have led to many novel and improved biomedical implants for electrical neural stimulation to restore human function and improve the quality of human life. Some examples of such biomedical devices are cochlear implants, visual implants, deep brain stimulators and spinal cord stimulators. One of the key components of biomedical implants is the stimulating electrodes. The electrodes, when in contact with living tissue, form an interface between the electronic device and the biological tissue. This paper reviews electrochemical aspects of neural stimulation implants. A brief introduction on the developments of biomedical implants is presented. The basis for electrical stimulation and the fundamental mechanisms of charge injection at the electrode/tissue interface are introduced. A survey of the most commonly used electrode materials and methods in the fabrication of microelectrodes is given. Some electrochemical related challenges for the development of medical implants, such as electrode reactions, impedance, charge injection capability, electrode corrosion and biocompatibility are discussed. In addition, microsensors and microbiosensors for possible applications in biomedical implants are reviewed. The challenges in the development of chronic implantable sensors for medical implants are also discussed. A better understanding of design issues and challenges may encourage interdisciplinary efforts including more contributions from electrochemists to push forward the development of neural stimulation biomedical implants.

参考文献

[1] McVenes R, Stokes K. Implantable cardiac electrostimulation devices[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 221-251.
[2] Moffitt M, Lee D, Bradley K. Spinal cord stimulation: engineering approaches to clinical and physiological challenges[M]// Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 155-194.
[3] Han M, McCreery D. Microelectrode technologies for deep brain stimulation[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 195-515.
[4] Zeng F, Rebscher S, Harrison W, et al. Cochlear implants[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 85-116.
[5] Zhou D, Greenberg R. Microelectronic visual prostheses[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 1-42.
[6] Schulman J. Brain control and sensing of artificial limbs[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 275-291.
[7] Lim H, Lenarz M, Lenarz T. A new auditory prosthesis using deep brain stimulation: development and implementation[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 117-154.
[8] Rebscher S, Hetherington A, Bonham B, et al. Considerations for design of future cochlear implant electrode arrays: electrode array stiffness, size, and depth of insertion[J]. J Rehabil Res Dev, 2008, 45(5):731-47.
[9] Sui X, Li L, Chai X, et al. Visual prosthesis for optic nerve stimulation[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 43-84.
[10] Normann R, Maynard E, Rousche P, et al. A neural interface for a cortical vision prosthesis[J]. Vision Research, 1999, 39: 2577–2587.
[11] McCreery D. Tissue reaction to electrodes: The problem of safe and effective stimulation of neural tissue[M]// K Horch, Dhillon (eds). Neuroprosthetics Theory and Practice. World Scientific, 2004: 592-611.
[12] Merrill D. The electrochemistry of charge injection at the electrode/tissue interface[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 2, Techniques and Engineering Approaches. New York: Springer, c2010: 85-138.
[13] Shah S, Hines A, Zhou D, et al. Electrical properties of retinal-electrode interface. J Neural Eng, 2007, 4(1): S24-29.
[14] Hung A, Goldberg I, Judy J. Stimulation electrode materials and electrochemical testing methods[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 2, Techniques and Engineering Approaches. New York: Springer, c2010: 191-216.
[15] Bard A, Faulkner L. Electrochemical methods, Chapter 7[M]. New York: Wiley, 1980.
[16] Zhou D, Cui X, Hines A, et al. Conducting polymers in neural stimulation applications[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 2, Techniques and Engineering Approaches. New York: Springer, c2010: 217-252.
[17] Robblee L, Rose T. Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation[M]//Agnew W, McCreery D (eds). Neural Prostheses fundamental studies. NJ: Prentice Hall, 1990: 26–66.
[18] Zhou D. Platinum electrode and method for manufacturing the same[P]. US Patent 6,974,533, Dec., 2005.
[19] Cogan S. Neural stimulation and recording electrodes[J]. Annu Rev Biomed Eng, 2008, 10: 14.1–14.35.
[20] Zhou D, Greenberg R. Tantalum capacitive microelectrode array for neural prosthesis[M]//Butler M, et al (eds). Chemical and biological sensors and analytical methods II. The Electrochemical Society, 2001: 622–629.
[21] Norlin A, Pan J, Leygrafa C. Investigation of electrochemical behavior of stimulation/sensing materials for pacemaker electrode applications I. Pt, Ti, and TiN coated electrodes[J]. J Electrochem Soc, 2005, 152: J7–J15.
[22] Kim E, Seo J, Woo S, et al. Fabrication of pillar shaped electrode arrays for artificial retinal implants[J]. Sensors, 2008, 8:5845–5856.
[23] Cheung K. Thin-film microelectrode arrays for biomedical applications[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 2, Techniques and Engineering Approaches. New York: Springer, c2010: 157-190.
[24] Hu Z, Zhou D, Greenberg R, et al. Nanopowder molding method for creating implantable high-aspect-ratio electrodes on thin flexible substrates[J]. Biomaterials, 2006, 27: 2009–2017.
[25] Zhou D, Greenberg R. Microsensors and microbiosensors for retinal implants[J]. Front Biosci, 2005, 10: 166–179.
[26] Hudak E, Mortimer J, Martin H. Platinum for neural stimulation: voltammetry considerations[J]. J Neural Eng, 2010, 7: 026005.
[27] Stokes K. The biocompatibility and biostability of new cardiovascular materials and devices[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 2, Techniques and Engineering Approaches. New York: Springer, c2010: 1-26.
[28] Zhou D, Chu A, Agazaryan A, et al. Platinum micro-electrode corrosion under neuro-stimulation conditions[C]// Proc. of 207th Electrochemical Society Meeting. Quebec City, Canada, May 15-20, 2005: 275.
[29] Hung A, D Zhou, R Greenberg et al. Pulse-clamp technique for characterizing neural-stimulating electrodes[J]. J Electrochem Soc, 154, 2007: C479-C486.
[30] Zhou D, Hines A, Little J, et al. Process for cathodic protection of electrode materials[P]. US Patent 7,691,252, April, 2010.
[31] Cui X, Zhou D. Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation[J]. IEEE Trans Neural Syst Rehabil Eng, 2007, 15: 502–508.
[32] Luo X, Weaver C, Zhou D et al. Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation[J]. Biomaterials, 2011, 32(24): 5551-7.
[33] Berman E, Retina. Biochemistry of the eye[M]. NY: Plenum Press, 1991: 309-315.
[34] Chow A, Pardue M, Perlman J, et al. Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs[J]. J Rehabil Res, 2002, 39: 313-321.
[35] Frost M, Meyerhoff M. Implantable chemical sensors for real-time clinical monitoring: progress and challenges[J]. Curr Opin Chem Biol, 2002, 6: 633-41.
[36] Huang C, Carter P, Shepherd R. Stimulus induced pH changes in cochlear implants: an in vitro and in vivo study[J]. Ann Biomed Eng, 2001, 29: 791–802.
[37] Zhou D. Microelectrodes for in-vivo determination of pH[M]//Electrochemical Sensors, Biosensors and Their Biomedical Applications. Elsevier, 2007: 261-305.
文章导航

/