欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

富氧空位的超亲水多孔CoOOH纳米结构用于大电流密度尿素电氧化

展开
  • 云南省磷化工节能与新材料重点实验室,昆明理工大学化学工程学院,云南 昆明 650500
吕文静,唐小鳗,王雪彤,刘文才,朱鉴文,王国静,朱远蹠

网络出版日期: 2025-05-19

Superhydrophilic Porous CoOOH Nano-Architecture with Abundant Oxygen Vacancies for Enhanced Urea Electrooxidation at Ampere-Level Current Densities

Expand
  • Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming University of Science and Technology Kunming 650500, Yunnan, China
Wenjing Lv, Xiaoman Tang, Xuetong Wang, Wencai Liu, Jianwen Zhu, Guojing Wang and Yuanzhi Zhu
Guojing Wang,Yuanzhi Zhu

Online published: 2025-05-19

摘要

含尿素废水的转化制取清洁氢能技术日益受到关注,但尿素氧化反应(UOR)仍面临催化动力学迟缓和长期稳定性不足的挑战。本研究通过电化学重构CoP纳米针前驱体,在碳纤维纸(CFP)上构建了具有亲水表面和丰富氧空位(Ov)的松散多孔CoOOH纳米结构(CoOOH LPNAs)。该三维电极在1000 mA cm−2电流密度下展现出1.38 V(vs. RHE)的低电位和优异的UOR耐久性。在阴离子交换膜(AEM)电解槽中,工业级尿素辅助水分解仅需1.53 V即可实现1000 mA cm−2的电流密度,并稳定运行100小时无衰减。实验与理论研究表明,丰富的氧空位能够有效调控CoOOH的电子结构并且产生Co原子相互靠近的独特Co3三角活性位点。这种协同作用精确调控了反应物及中间产物的吸附-脱附过程,显著降低了UOR的热力学能垒。此外,超亲水自支撑纳米阵列结构促进了反应过程中气体气泡的快速脱附,既提升了整体反应效率,又避免了气泡堆积引发的催化剂剥离问题,从而在高电流密度下同时实现了催化活性和稳定性的双重提升。

本文引用格式

吕文静, 唐小鳗, 王雪彤, 刘文才, 朱鉴文, 王国静, 朱远蹠 . 富氧空位的超亲水多孔CoOOH纳米结构用于大电流密度尿素电氧化[J]. 电化学, 0 : 0 . DOI: 10.61558/2993-074X.3550

Abstract

The conversion of urea-containing wastewater into clean hydrogen energy has gained increasing attention. However, challenges remain, particularly with sluggish catalytic kinetics and limited long-term stability of urea oxidation reaction (UOR). Herein, we report loosely porous CoOOH nano-architecture (CoOOH LPNAs) with hydrophilic surface and abundant oxygen vacancies (Ov) on carbon fiber paper (CFP) by electrochemical reconstruction of the CoP nanoneedles precursor. The resulting three-dimensional electrode exhibits an impressively low potential of 1.38 V at 1000 mA cm−2 and excellent durability for UOR. Furthermore, in an anion exchange membrane (AEM) electrolyzer, it requires only 1.53 V at 1000 mA cm−2 for industrial urea-assisted water splitting and operates stably for 100 h without degradation. Experimental and theoretical investigations reveal that rich oxygen vacancies effectively modulate the electronic structure of the CoOOH while creating unique Co3-triangle sites with Co atoms close together. As a result, the adsorption and desorption processes of reactants and intermediates in UOR are finely tuned, thereby significantly reducing thermodynamic barriers. Additionally, the superhydrophilic self-supported nanoarray structure facilitates rapid gas bubble release, improving the overall efficiency of the reaction and preventing potential catalyst detachment caused by bubble accumulation, thereby improving both catalytic activity and stability at high current densities.
文章导航

/