欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

锂电池热管理研究进展

  • 李宏达 ,
  • 沈秋婉 ,
  • 张朝阳 ,
  • 赵新悦 ,
  • 魏源 ,
  • 李世安
展开
  • 大连海事大学轮机工程学院,辽宁 大连 116026

收稿日期: 2024-11-16

  修回日期: 2025-01-23

  录用日期: 2025-02-20

  网络出版日期: 2025-02-20

Research Progress on Thermal Management of Lithium-Ion Batteries

  • Hong-Da Li ,
  • Qiu-Wan Shen ,
  • Zhao-Yang Zhang ,
  • Xin-Yue Zhao ,
  • Yuan Wei ,
  • Shi-An Li
Expand
  • School of Marine Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
*Qiu-Wan Shen, E-mail: shenqiuwan@dlmu.edu.cn

Received date: 2024-11-16

  Revised date: 2025-01-23

  Accepted date: 2025-02-20

  Online published: 2025-02-20

摘要

目前,新能源技术高速发展,储能系统广泛应用,锂离子电池在其中占据着主导地位,因此通过热管理技术保障其使用性能、安全性并延长使用寿命也至关重要。本文首先综述了锂电池热失控的诱因,并根据近年来相关文献对比了常用的三种锂电池热管理技术,即空气冷却、液体冷却和相变材料冷却。空气冷却技术因其结构简单、成本较低而被广泛研究,但控温效果较差。液体冷却技术通过液体介质的循环来带走热量,具有较好的冷却效果,但系统相对复杂。相变材料(PCM)冷却技术利用相变材料的高潜热来吸收和释放热量,能有效降低电池的峰值温度并提高温度均匀性,但导热系数低和液体泄漏是其主要问题。综上所述,锂电池热管理技术正朝着更高效、更安全和成本效益更高的方向发展。耦合冷却系统,如结合液体冷却和相变材料冷却的方法,显示出巨大的潜力。未来的研究将继续探索新的材料和技术,以满足社会和市场对锂电池性能和安全性的日益增长的需求。

本文引用格式

李宏达 , 沈秋婉 , 张朝阳 , 赵新悦 , 魏源 , 李世安 . 锂电池热管理研究进展[J]. 电化学, 2025 , 31(7) : 2411161 . DOI: 10.61558/2993-074X.3526

Abstract

Nowadays, new energy technologies are developing rapidly, energy storage systems are widely used, and lithium-ion batteries occupy a dominant position among them. Therefore, it is also very important to ensure their performance, safety and service life through thermal management technology. In this paper, the causes of thermal runaway of lithium batteries are reviewed firstly, and three commonly used thermal management technologies, namely, air cooling, liquid cooling and phase change material cooling, are compared according to relevant literature in recent years. Air cooling technology has been widely studied because of its simple structure and low cost, but its temperature control effect is poor. Liquid cooling technology takes away heat through the circulation of liquid medium, which has a good cooling effect, but the system is relatively complex. Phase change material (PCM) cooling technology uses the high latent heat of PCM to absorb and release heat, which can effectively reduce the peak temperature of a battery and improve the temperature uniformity, but the low thermal conductivity and liquid leakage are its main problems. To sum up, lithium-ion battery thermal management technology is moving towards a more efficient, safer and cost-effective direction. Coupled cooling systems, such as those combining liquid cooling and phase change material cooling, show great potential. Future research will continue to explore new materials and technologies to meet the growing demands of society and the market for lithium-ion battery performance and safety.

参考文献

[1] Zhang H L, Ishrak M. F, Liu X Q. Development and forecasting of electrochemical energy storage: An evidence from China[J]. J. Energy Storage, 2024, 86: 111296. https://doi.org/10.1016/j.est.2024.111296
[2] Li X H, Wang Z P, Zhang L, Sun F C, Cui D S. Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview[J]. Energy, 2023, 268: 126647. https://doi.org/10.1016/j.energy.2023.126647.
[3] Kumar R R, Alok K. Adoption of electric vehicle: A literature review and prospects for sustainability[J]. J. Clean. Prod., 2020, 253: 119911. https://doi.org/10.1016/j.jclepro.2019.119911
[4] Feng X N, Ren D S, He X M, Ouyang M G. Mitigating Thermal Runaway of Lithium-Ion Batteries[J]. Joule, 2020. 4: 743-770. https://doi.org/10.1016/j.joule.2020.02.010.
[5] Delp S A, Borodin O, Olguin M, Eisner C G, Allen J L. Importance of reduction and oxidation stability of high voltage electrolytes and additives[J]. Electrochim. Acta, 2016, 209: 498-510. https://doi.org/10.1016/j.electacta.2016.05.100
[6] Wang Q S, Ping P, Zhao X J, Chu G Q, Sun J H, Chen C H. Thermal runaway caused fire and explosion of lithium ion battery[J]. J. Power Sources, 2012, 208: 210-224. https://doi.org/10.1016/j.jpowsour.2012.02.038
[7] Lai X, Zheng Y J, Zhou L, Gao W K. Electrical behavior of over discharge-induced internal short circuit in lithium-ion batteries[J]. Electrochim. Acta, 2018, 278: 245-254. https://doi.org/10.1016/j.electacta.2018.05.048
[8] Wang Q S, Mao B B, Sun J H. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Prog. Energ. Combust., 2019, 73: 95-131. https://doi.org/10.1016/j.pecs.2019.03.002
[9] Song L B, Zheng Y H, Xiao Z L, Wang C, Long T Y. Review on Thermal Runaway of Lithium-Ion Batteries for Electric Vehicles[J]. J. Electron. Mater., 2022, 51: 30-46. https://doi.org/10.1007/s11664-021-09281-0
[10] Kong D P, Lv H P, Ping P, Wang G Q. A review of early warning methods of thermal runaway of lithium ion batteries[J]. J. Energy Storage, 2023, 64: 107073. https://doi.org/10.1016/j.est.2023.107073
[11] Shahid S, Agelin-Chaab M. A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries[J]. Energ. Convers. Man:X, 2022, 16: 100310. https://doi.org/10.1016/j.ecmx.2022.100310
[12] Spotnitz R, Franklin J. A buse behavior of highGpower, lithiumGion cells[J]. J. Power Sources, 2003, 113(1): 81-100. https://doi.org/10.1016/S0378-7753(02)00488-3
[13] Xu J, Wu Y J, Yin S. Investigation of effects of design parameters on the internal short-circuit in cylindrical lithium-ion batteries[J]. RSC Advances, 2017, 7(24): 14360-14371. https://doi.org/10.1039/C6RA27892B.
[14] Feng X N, Ouyang M G, Liu X, Lu L G, Xia Y, He X M. Thermal runaway mechanism of lithium-ion battery for electric vehicles: A review[J]. J. Energy Storage Materials, 2018, 10:246-267.https://doi.org/10.1016/j.ensm.2017.05.013.
[15] Zhao G, Wang X L, Zhang H Y, Negnevitsky M. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles[J]. J. Power Sources, 501: 230001. https://doi.org/10.1016/j.jpowsour.2021.230001.
[16] Wang T, Tseng K J, Zhao J Y, Wei Z B. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Appl. Energy, 2014, 134: 229-238. https://doi.org/10.1016/j.apenergy.2014.08.013
[17] Hong S H, Zhang X Q, Chen K, Wang S F. Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent[J]. Int. J. Heat Mass Tran., 2018, 116: 1204-1212. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.092
[18] Pesaran A A. Battery thermal models for hybrid vehicle simulations[J]. J. Power Sources, 2002, 110(2): 377-382. https://doi.org/10.1016/S0378-7753(02)00200-8
[19] Chen K, Chen Y M, Li Z Y, Yuan F, Wang S F. Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system[J]. Int. J. Heat Mass Tran., 2018, 127: 393-401. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.131.
[20] Yu X L, Lu Z, Zhang L Y, Wei L C, Cui X, Jin L W. Experimental study on transient thermal characteristics of stagger-arranged lithium-ion battery pack with air cooling strategy[J]. Int. J. Heat Mass Tran., 2019, 143:118576. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118576
[21] Yang W, Zhou F, Zhou H B, Liu Y C. Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module[J]. Int. J. Heat Mass Tran., 2020, 161: 120307. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120307
[22] Zhang F R, Yi M F, Wang P W, Liu C W. Optimization design for improving thermal performance of T-type air-cooled lithium-ion battery pack[J]. J. Energy Storage, 2021, 44:103464. https://doi.org/10.1016/j.est.2021.103464
[23] Hasan H A, Togun H, Abed A M. A novel air-cooled Li-ion battery (LIB) array thermal management system - a numerical analysis[J]. Int. J. Therm. Sci., 2023, 190:108327. https://doi.org/10.1016/j.ijthermalsci.2023.108327
[24] Lu Z, Meng X Z, Wei L C. Thermal management of densely-packed EV battery with forced air cooling strategies[J]. CUE 2015 - applied energy symposium and summit 2015: low carbon cities and urban energy systems, 2016, 88: 682-688. https://doi.org/10.1016/j.egypro.2016.06.098
[25] Lu Z, Yu X L, Wei L C, Qiu Y L, Zhang L Y, Meng X Z, Jin LW. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement[J]. Appl. Therm. Eng., 2018, 136(25): 28-40. https://doi.org/10.1016/j.applthermaleng.2018.02.080
[26] Zhou H B, Zhou F, Xu L P, Kong J Z, Yang Q X. Thermal performance of cylindrical Lithium-ion battery thermal management system based on air distribution pipe[J]. Int. J. Heat Mass Tran., 2019, 131: 984-998. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.116
[27] Chen K, Wu W X, Yuan F, Chen L, Wang S F. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern[J]. Energy, 2019, 167(15): 781-790. https://doi.org/10.1016/j.energy.2018.11.011
[28] Li X, Zhao J, Yuan J, Duan J B, Liang C Y. Simulation and analysis of air cooling configurations for a lithium-ion battery pack[J]. J. Energy Storage, 2021, 35: 102270. https://doi.org/10.1016/j.est.2021.102270
[29] Wang H L Y. Cooling performance optimization of air-cooled battery thermal management system[J]. Appl. Therm. Eng.: Design, processes, equipment, economics, 2021, 195:117242. https://doi.org/10.1016/j.applthermaleng.2021.117242
[30] Sahin R C, Gocmen S, Etkin E. Thermal management system for air-cooled battery packs with flow-disturbing structures[J]. J. Power Sources, 2022, 551(15): 232214. https://doi.org/10.1016/j.jpowsour.2022.232214
[31] Zhang F R, Liu P W, He Y X, Li S Y. Cooling performance optimization of air cooling lithium-ion battery thermal management system based on multiple secondary outlets and baffle[J]. J. Energy Storage, 2022, 52: 104678. https://doi.org/10.1016/j.est.2022.104678
[32] Zhang S B, Nie F, Cheng J P. Optimizing the air flow pattern to improve the performance of the air-cooling lithium-ion battery pack[J]. Appl. Therm. Eng., 2024, 236:121486. https://doi.org/10.1016/j.applthermaleng.2023.121486
[33] E J Q, Han D D, Qiu A, Zhu H, Deng Y W, Chen J W, Zhao X N, Zhou W, Wang H C, Chen J M. Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system[J]. Appl. Therm. Eng., 2018, 132: 508-520. https://doi.org/10.1016/j.applthermaleng.2017.12.115
[34] Jin L W, Kong X X, Lee P S, Fang Y, Chou S K. Ultra-thin minichannel LCP for EV battery thermal management[J]. Appl. Energy, 2014, 113: 1786-1794. https://doi.org/10.1016/j.apenergy.2013.07.013
[35] Darcovich K, Macneil D D, Recoskie S. Comparison of cooling plate configurations for automotive battery pack thermal management[J]. Appl. Therm. Eng., 2019, 155(5): 185-195. https://doi.org/10.1016/j.applthermaleng.2019.03.146
[36] Chung Y, Kim M S. Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles[J]. Energ. Convers. Manage., 2019, 196(15): 105-116. https://doi.org/10.1016/j.enconman.2019.05.083
[37] Rao Z H, Qian Z, Kuang Y, Li Y M. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface[J]. Appl. Therm. Eng., 2017, 123: 1514-1522. https://doi.org/10.1016/j.applthermaleng.2017.06.059
[38] Yang W, Zhou F, Liu Y C, Xu S, Chen X. Thermal performance of honeycomb-like battery thermal management system with bionic liquid mini-channel and phase change materials for cylindrical lithium-ion battery[J]. Appl. Therm. Eng., 2021, 188: 116649. https://doi.org/10.1016/j.applthermaleng.2021.116649
[39] Qi W J, Lan P, Yang J X, Chen Y, Zhang Y M, Wang G J, Peng F, Hong J C. Multi-U-Style micro-channel in liquid cooling plate for thermal management of power batteries[J]. Appl. Therm. Eng., 2024, 256(1): 123984. https://doi.org/10.1016/j.applthermaleng.2024.123984
[40] Li S, Wang C, Shen Q. Numerical study on thermal performance of cold plates with leaf type channels for lithium-ion batteries[J]. Int. J. Nume.r Method H, 2023, 33(10): 3519-3534. https://doi.org/10.1108/HFF-05-2023-0256
[41] Qian Z, Li Y M, Rao Z H. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling[J]. Energ. Convers. Manage., 2016, 126(15): 622-631. https://doi.org/10.1016/j.enconman.2016.08.063
[42] Sheng L, Su L, Zhang H, Li K, Fang Y D, Ye W, Fang Y. Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger[J]. Int. J. Heat Mass Tran., 2019, 141: 658-668. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.033
[43] Zhou H B, Zhou F, Wang Q, Wang Q Z, Song Z B. Thermal management of cylindrical Lithium-ion battery based on a liquid cooling method with half-helical duct[J]. Appl. Therm. Eng., 2019, 162(5): 114257. https://doi.org/10.1016/j.applthermaleng.2019.114257
[44] Wang H T, Tao T, Xu J, Mei X S, Liu X Y, Gou P. Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries[J]. Appl. Therm. Eng., 2020, 178: 115591. https://doi.org/10.1016/j.applthermaleng.2020.115591
[45] Gao R J, Fan Z H, Liu S T. A gradient channel-based novel design of liquid-cooled battery thermal management system for thermal uniformity improvement[J]. J. Energy Storage, 2022, 48: 114014. https://doi.org/10.1016/j.est.2022.104014
[46] Luo W M, Li H N, Chu T Y, Chen J, Li C C, Huang S M, Wu W X, Lv Y F. A numerical study of battery thermal management system with square spiral ring-shaped liquid cooling plate[J]. Them. Sci. Eng. Prog., 2023, 45(1): 104014. https://doi.org/10.1016/j.tsep.2023.102120
[47] Wang Y C, Xu X B, Liu Z W, Kong J Z, Zhai Q W, Hossam Zakaria, Wang Q Z, Zhou F, Wei H Y. Optimization of liquid cooling for prismatic battery with novel cold plate based on butterfly-shaped channel[J]. J. Energy Storage, 2023, 73: 109161. https://doi.org/10.1016/j.est.2023.109161
[48] Sui Z G, Lin H S, Sun Q, Dong K J, Wu W. Multi-objective optimization of efficient liquid cooling-based battery thermal management system using hybrid manifold channels[J]. Appl. Energy, 2024, 371(1): 123766. https://doi.org/10.1016/j.apenergy.2024.123766
[49] Lv Y F, Yang X Q, Zhang G Q. Durability of phase-change-material module and its relieving effect on battery deterioration during long-term cycles[J]. Appl. Therm. Eng.: Design, processes, equipment, economics, 2020, 179: 115747. https://doi.org/10.1016/j.applthermaleng.2020.115747
[50] Zhao C G, Li Y F, Liu Y C, Zhu D H, Ma M P, Yu W. Polyurethane foam skeleton-based phase change hydrogel for efficient battery thermal management with favorable antivibration performance[J]. ACS Appl. Mater. Interfaces, 2023, 15(42): 49653-49664. https://doi.org/10.1021/acsami.3c11570
[51] Najafi K H, Jaliliantabar F, Abdullah A A. Parametric investigation of battery thermal management system with phase change material, metal foam, and fins; utilizing CFD and ANN models[J]. Appl. Therm. Eng., 2024, 247: 123080. https://doi.org/10.1016/j.applthermaleng.2024.123080
[52] Mohammadian S K, Zhang Y. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. J. Power Sources, 2015, 273(1): 431-439. https://doi.org/10.1016/j.jpowsour.2014.09.110
[53] Jiang G W, Huang J H, Fu Y S, Gao M, Liu M C. Thermal optimization of composite phase change material/ expanded graphite for Li-ion battery thermal management[J]. Appl. Therm. Eng., 2016: 1119-1125. https://doi.org/10.1016/j.applthermaleng.2016.07.197
[54] Hussain A, Tso C Y, Chao C Y H. Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite[J]. Energy, 2016, 115: 209-218. https://doi.org/10.1016/j.energy.2016.09.008
[55] Pan M Q, Lai W L. Cutting copper fiber/paraffin composite phase change material discharging experimental study based on heat dissipation capability of Li-ion battery[J]. Renew. Energ., 2017, 114: 408-422. https://doi.org/10.1016/j.renene.2017.07.004
[56] Wang Z W, Zhang H Y, Xia X. Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure[J]. Int. J. Heat Mass Tran., 2017, 109: 958-970. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.057
[57] Zou D Q, Ma X F, Liu X S, Zheng P J, Hu Y P. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery[J]. Int. J. Heat Mass Tran., 2018, 120: 33-41. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.024
[58] Buonomo B, Ercole D, Manca O, Menale F. Thermal cooling behaviors of lithium-ion batteries by metal foam with phase change materials[J]. Energy Procedia, 2018, 148: 1175-1182. https://doi.org/10.1016/j.egypro.2018.08.024
[59] Lazrak A, Fourmigué, Jean-Franois, Robin J F. An innovative practical battery thermal management system based on phase change materials: Numerical and experimental investigations[J]. Appl. Therm. Eng., 2018, 1289(5): 20-32. https://doi.org/10.1016/j.applthermaleng.2017.08.172
[60] Weng G W, Ouyang D X, Yang X Q, Chen M Y, Zhang G Q, Wang J. Optimization of the internal fin in a phase-change-material module for battery thermal management[J]. Appl. Therm. Eng., 2019, 167: 114698. https://doi.org/10.1016/j.applthermaleng.2019.114698
[61] Choudhari V G, Dhoble A S, Panchal S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization[J]. Int. J. Heat Mass Tran., 2020, 163: 120434. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120434
[62] Zhang W C, Liang Z C, Ling G Z, Huang L S. Influence of phase change material dosage on the heat dissipation performance of the battery thermal management system[J]. J. Energy Storage, 2021, 41: 102849. https://doi.org/10.1016/j.est.2021.102849
[63] Ling Z Y, Li S M, Cai C Y, Lin S, Fang X M, Zhang Z G. Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability[J]. Appl. Therm. Eng., 2021, 193(5): 117002. https://doi.org/10.1016/j.applthermaleng.2021.117002
[64] Rajan J T, Jayapal V S, Krishna M J. Analysis of battery thermal management system for electric vehicles using 1-tetradecanol phase change material[J]. Sustain. Energy Techn., 2022, 51: 101943. https://doi.org/10.1016/j.seta.2021.101943
[65] Huang P F, Feng R L, Tang Z Y, He Y Y, Peng D Z, Eric Li, Wei M Y, He Z C, Bai Z H. Exploring the use of 3D graphene sponge composited phase change material for improved thermal performance in battery thermal management systems[J]. Appl. Therm. Eng., 2023, 235: 121389. https://doi.org/10.1016/j.applthermaleng.2023.121389
[66] He R Q, Fang M, Zhou J D, Fei H, Yang K. Enhancement of battery thermal management effect by a novel MOF based composite phase change material[J]. Appl. Therm. Eng., 2024, 257: 124257. https://doi.org/10.1016/j.applthermaleng.2024.124257
[67] Zhou G, Huang Q, Zhang Q, Niu C X, Lu H H, Yang S Q, Liu Y, Wei Z K, Li S L, Kong Y. Thermal insulation phase-change hydrogel with enhanced mechanical properties for inhibiting thermal runaway propagation in lithium-ion battery module[J]. J. Energy Storage, 2024, 102: 114102. https://doi.org/10.1016/j.est.2024.114102
[68] Li S, Cheng Y, Yang P G. Numerical analysis on the thermal management of phase change material with fins for lithium-ion batteries[J]. Int. J. Numer. Method H, 2024, 34(3): 1170-1188. https://doi.org/10.1108/HFF-08-2023-0482
[69] Ling Z Y, Wang F X, Fang X M, Gao X N, Zhang Z G. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Appl. Energy, 2015, 148: 403-409. https://doi.org/10.1016/j.apenergy.2015.03.080
[70] Huang H F, Wang H, Gu J Q, Wu Y Q. High-dimensional model representation-based global sensitivity analysis and the design of a novel thermal management system for lithium-ion batteries[J]. Energ. Convers. Manage., 2019, 190: 54-72. https://doi.org/10.1016/j.enconman.2019.04.013
[71] Hekmat S, Molaeimanesh G R. Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes: An experimental investigation[J]. Appl. Therm. Eng., 2019, 166(5): 114759. https://doi.org/10.1016/j.applthermaleng.2019.114759
[72] Yang W, Zhou F, Zhou H B, Wang Q Z, Kong J Z. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling[J]. Appl. Therm. Eng., 2020, 175: 115331. https://doi.org/10.1016/j.applthermaleng.2020.115331.
[73] Zhuang Y J, Chen T H, Chen J T, Li J B, Guan M T, Chen Y N. Thermal uniformity performance of a hybrid battery thermal management system using phase change material and cooling plates arrayed in the manner of honeycomb[J]. Them. Sci. Eng. Prog., 2021, 26(1): 101094. https://doi.org/10.1016/j.tsep.2021.101094
[74] Qin P, Liao M R, Mei W X, Sun J H, Wang Q S. The experimental and numerical investigation on a hybrid battery thermal management system based on forced-air convection and internal finned structure[J]. Appl. Therm. Eng., 2021, 195: 117212. https://doi.org/10.1016/j.applthermaleng.2021.117212
[75] Wang R, Liang Z, Souri M, ,M.N. Esfahani, M. Jabbari. Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method[J]. Int. J. Heat Mass Tran., 2022, 183: 122095. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122095
[76] Zhao L S, Li W, Wang G Y, Cheng W M, Chen M Y. A novel thermal management system for lithium-ion battery modules combining direct liquid-cooling with forced air-cooling[J]. Appl. Therm. Eng., 2023, 232: 120992. https://doi.org/10.1016/j.applthermaleng.2023.120992
[77] Liu Z K, Xu G Q, Xia Y G, T S. Numerical study of thermal management of pouch lithium-ion battery based on composite liquid-cooled phase change materials with honeycomb structure[J]. J. Energy Storage, 2023, 70(15): 108001. https://doi.org/10.1016/j.est.2023.108001
[78] Lu D, Cui N X, Zhou J W, Li C L. Hybrid cooling system with phase change material and liquid microchannels to prevent thermal runaway propagation within lithium-ion battery packs[J]. Appl. Therm. Eng., 2024, 247: 123118. https://doi.org/10.1016/j.applthermaleng.2024.123118
文章导航

/