Pt2NiCo金属间化合物的有序度调控及电催化氧还原反应性能研究
收稿日期: 2024-11-26
修回日期: 2024-12-29
录用日期: 2025-01-09
网络出版日期: 2025-01-09
Ordering Degree Regulation of Pt2NiCo Intermetallics for Efficient Oxygen Reduction Reaction
Received date: 2024-11-26
Revised date: 2024-12-29
Accepted date: 2025-01-09
Online published: 2025-01-09
开发高效、稳定的氧还原反应电催化剂对于质子交换膜燃料电池的大规模应用具有重要的促进作用。合金化是目前广泛采用的Pt基催化剂优化策略之一,然而,传统Pt基无序合金催化剂活性目前依然无法满足燃料电池设备的要求。此外,过渡金属容易在酸性体系中发生腐蚀溶解,造成催化剂活性的迅速衰减,从而导致设备的整体稳定性较差。相比之下,金属间化合物因其原子有序排列可以提供独特的电子效应、几何效应及更强的金属间相互作用,实现催化活性与稳定性双重提升的目标。本文报道了一种L10型Pt2NiCo三元有序金属间化合物纳米催化剂(o-Pt2NiCo),相较于Pt2NiCo无序合金和Pt/C,其催化活性与稳定性均有显著增加。通过进一步改变退火条件对Pt2NiCo的有序度进行调控,并探究了ORR性能与有序度之间的关系。实验结果表明,当退火温度为800 °C,退火时间为2 h时,Pt2NiCo有序度达到最高值35.9%,且有序度与催化活性呈正相关。对于电催化ORR反应,o-Pt2NiCo在0.9 V电位下的质量活性能够达到0.44·mgPt−1,分别是无序Pt2NiCo合金(d-Pt2NiCo)和Pt/C的1.8倍与2.8倍。同时,o-Pt2NiCo的催化稳定性也得到了大幅度提升,在30000圈电位循环后质量活性保持率依然能够达到70.8%,远超d-Pt2NiCo和Pt/C。
张辰浩 , 胡晗宇 , 杨竣皓 , 张倩 , 杨畅 , 王得丽 . Pt2NiCo金属间化合物的有序度调控及电催化氧还原反应性能研究[J]. 电化学, 2025 , 31(4) : 2411281 . DOI: 10.61558/2993-074X.3519
Alloying transition metals with Pt is an effective strategy for optimizing Pt-based catalysts toward the oxygen reduction reaction (ORR). Atomic ordered intermetallic compounds (IMC) provide unique electronic and geometrical effects as well as stronger intermetallic interactions due to the ordered arrangement of metal atoms, thus exhibiting superior electrocatalytic activity and durability. However, quantitatively analyzing the ordering degree of IMC and exploring the correlation between the ordering degree and ORR activity remains extremely challenging. Herein, a series of ternary Pt2NiCo intermetallic catalysts (o-Pt2NiCo) with different ordering degree were synthesized by annealing temperature modulation. Among them, the o-Pt2NiCo which annealed at 800 °C for two hours exhibits the highest ordering degree and the optimal ORR activity, which the mass activity of o-Pt2NiCo is 1.8 times and 2.8 times higher than that of disordered Pt2NiCo alloy and Pt/C. Furthermore, the o-Pt2NiCo still maintains 70.8% mass activity after 30,000 potential cycles. Additionally, the ORR activity test results for Pt2NiCo IMC with different ordering degree also provide a positive correlation between the ordering degree and ORR activity. This work provides a prospective design direction for ternary Pt-based electrocatalysts.
[1] | Sun Q, Li X H, Wang K X, Ye T N, Chen J S. Inorganic non-carbon supported Pt catalysts and synergetic effects for oxygen reduction reaction[J]. Energy Environ. Sci., 2023, 16(5): 1838-1869. |
[2] | Zhang C H, Zhang Q, Hu Y Z, Hu H Y, Yang J H, Yang C, Zhu Y, Tu Z K, Wang D L. N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction[J]. Chin. Chem. Lett., 2024, 36(3): 110429. DOI:10.1016/j.cclet.2024.110429. |
[3] | Chen F D, Xie Z Y, Li M T, Chen S G, Ding W, Li L, Li J, Wei Z D. Series reports from professor Wei’s group of chongqing university: advancements in electrochemical energy conversions (1/4): report 1: high-performance oxygen reduction catalysts for fuel cells[J]. J. Electrochem., 2024, 30(7): 2314007. |
[4] | Huang R Q, Liao W P, Yan M X, Liu S, Li Y M, Kang X W. P-doped Ru-Pt alloy catalyst toward high performance alkaline hydrogen evolution reaction[J]. J. Electrochem., 2023, 29(5): 2203081. |
[5] | Chen H J, Tang M H, Chen S L. Hydrophobicity optimization of cathode catalyst layer for proton exchange membrane fuel cell[J]. J. Electrochem., 2023, 29(9): 2207061. |
[6] | Jiao K, Xuan J, Du Q, Bao Z M, Xie B A, Wang B W, Zhao Y, Fan L H, Wang H Z, Hou Z J, Huo S, Brandon N P, Yin Y, Guiver M D. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. |
[7] | Zhang H, Shen P K. Recent development of polymer electrolyte membranes for fuel cells[J]. Chem. Rev., 2012, 112(5): 2780-2832. |
[8] | Staffell I, Scamman D, Velazquez Abad A, Balcombe P, Dodds P E, Ekins P, Shah N, Ward K R. The role of hydrogen and fuel cells in the global energy system[J]. Energy Environ. Sci., 2019, 12(2): 463-491. |
[9] | Yang Z L, Yang H Z, Shang L, Zhang T R. Ordered PtFeIr intermetallic nanowires prepared through a silica-protection strategy for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2022, 61(8): e202113278. |
[10] | Lin F X, Li M G, Zeng L Y, Luo M C, Guo S J. Intermetallic nanocrystals for fuel-cells-based electrocatalysis[J]. Chem. Rev., 2023, 123(22): 12507-12593. |
[11] | Yan L, Li P P, Zhu Q Y, Kumar A, Sun K, Tian S B, Sun X M. Atomically precise electrocatalysts for oxygen reduction reaction[J]. Chem, 2023, 9(2): 280-342. |
[12] | Zhang Q, Shen T, Song M, Wang S, Zhang J L, Huang X, Lu S F, Wang D L. High-entropy L12-Pt(FeCoNiCuZn)3 intermetallics for ultrastable oxygen reduction reaction[J]. J. Energy Chem., 2023, 86: 158-166. |
[13] | Kodama K, Nagai T, Kuwaki A, Jinnouchi R, Morimoto Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles[J]. Nat. Nanotechnol., 2021, 16(2): 140-147. |
[14] | Lazaridis T, Stühmeier B M, Gasteiger H A, El-Sayed H A. Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts[J]. Nat. Catal., 2022, 5(5): 363-373. |
[15] | Song M, Zhang Q, Shen T, Luo G Y, Wang D L. Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction[J]. Chin. Chem. Lett., 2023, 35(8): 109083. |
[16] | Hu Y Z, Wang S, Shen T, Zhu Y, Wang D L. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction[J]. Energy Storage Sci. Technol., 2022, 11(4): 1264-1277. |
[17] | Wang T Y, Liang J S, Zhao Z L, Li S Z, Lu G, Xia Z C, Wang C, Luo J H, Han J T, Ma C, Huang Y H, Li Q. Sub-6 nm fully ordered L10-Pt-Ni-Co nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain[J]. Adv. Energy Mater., 2019, 9(17): 1803771. |
[18] | Yan W, Wang X, Liu M M, Ma K Y, Wang L Q, Liu Q C, Wang C K, Jiang X, Li H, Tang Y W, Fu G T. PCTS-controlled synthesis of L10/L12-Typed Pt-Mn intermetallics for electrocatalytic oxygen reduction[J]. Adv. Funct. Mater., 2024, 34(6): 2310487. |
[19] | Zhang C H, Yang J H, Yang C, Hu H Y, Zhang Q, Luo G Y, Kong W J, Chen Y Q, Yang H P, Wang D L. Recent advances in confined Pt-based electrocatalysts for oxygen reduction reaction[J]. ChemCatChem, 2024, 16(21): e202400554. |
[20] | Song T W, Xu C, Sheng Z T, Yan H K, Tong L, Liu J, Zeng W J, Zuo L J, Yin P, Zuo M, Chu S Q, Chen P, Liang H W. Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts[J]. Nat. Commun., 2022, 13(1): 6521. |
[21] | Wang Z X, Yao X Z, Kang Y Q, Miao L Q, Xia D S, Gan L. Structurally ordered low-Pt intermetallic electrocatalysts toward durably high oxygen reduction reaction activity[J]. Adv. Funct. Mater., 2019, 29(35): 1902987. |
[22] | Li J, Xi Z, Pan Y T, Spendelow J S, Duchesne P N, Su D, Li Q, Yu C, Yin Z, Shen B, Kim Y S, Zhang P, Sun S. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells[J]. J. Am. Chem. Soc., 2018, 140(8): 2926-2932. |
[23] | Wang D, Xin H L, Hovden R, Wang H, Yu Y, Muller D A, Disalvo F J, Abru?a H D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nat. Mater., 2013, 12(1): 81-87. |
[24] | Li S, Li J J, Xu C, Zhang L, Li A, Song T W, Zhang W, Tong L, Liang H W. Multigram-scale synthesis of high-Pt-content PtCo intermetallic catalysts for proton exchange membrane fuel cells[J]. ACS Mater. Lett., 2024, 6(2): 706-712. |
[25] | Gong M X, Zhu J, Liu M J, Liu P F, Deng Z P, Shen T, Zhao T H, Lin R Q, Lu Y, Yang S Z, Liang Z X, Bak S M, Stavitski E, Wu Q, Adzic R R, Xin H L, Wang D L. Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to in situ XAFS characterization[J]. Nanoscale, 2019, 11(42): 20301-20306. |
[26] | Xu S L, Yin P, Zuo L J, Yin S Y, Zuo M, Zhang W, Fu X Z, Liang H W. Cuprous sulfide intermediate assisted synthesis of PtCu3 intermetallic electrocatalysts in multigram scale for oxygen reduction[J]. Inorg. Chem. Front., 2023, 10(11): 3359-3366. |
[27] | Zhao T, Luo E G, Li Y, Wang X, Liu C P, Xing W, Ge J J. Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction[J]. Sci. Chin. Mater., 2021, 64(7): 1671-1678. |
[28] | Zhang L B, Ji X D, Wang X R, Fu Y Q, Zhu H, Liu T X. Chemically ordered Pt-Co-Cu/C as excellent electrochemical catalyst for oxygen reduction reaction[J]. J. Electrochem. Soc., 2020, 167(2): 024507. |
[29] | Qin J Y, Zou P C, Zhang R, Wang C Y, Yao L B, Xin H L L. Pt-Fe-Cu ordered intermetallics encapsulated with N-doped carbon as high-performance catalysts for oxygen reduction reaction[J]. ACS Sustain. Chem. Eng., 2022, 10(42): 14024-14033. |
[30] | Stamenkovic V, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M, Rossmeisl J, Greeley J, N?rskov J K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angew. Chem. Int. Ed., 2006, 45(18): 2897-2901. |
[31] | Gong M X, Deng Z P, Xiao D D, Han L L, Zhao T H, Lu Y, Shen T, Liu X P, Lin R Q, Huang T, Zhou G W, Xin H L, Wang D L. One-nanometer-thick Pt3Ni bimetallic alloy nanowires advanced oxygen reduction reaction: integrating multiple advantages into one catalyst[J]. ACS Catal., 2019, 9(5): 4488-4494. |
[32] | Jin H, Xu Z W, Hu Z Y, Yin Z W, Wang Z, Deng Z, Wei P, Feng S H, Dong S H, Liu J F, Luo S C, Qiu Z D, Zhou L, Mai L Q, Su B L, Zhao D Y, Liu Y. Mesoporous Pt@Pt-skin Pt3Ni core-shell framework nanowire electrocatalyst for efficient oxygen reduction[J]. Nat. Commun., 2023, 14(1): 1518-1528. |
[33] | Chen J X, Dong J B, Huo J L, Li C Z, Du L, Cui Z M, Liao S J. Ultrathin Co-N-C layer modified Pt-Co intermetallic nanoparticles leading to a high-performance electrocatalyst toward oxygen reduction and methanol oxidation[J]. Small, 2023, 19(37): 2301337. |
[34] | Li M X, Cai Y D, Zhang J J, Sun H X, Li Z, Liu Y J, Zhang X, Dai X P, Gao F, Song W Y. Highly stable Pt3Ni ultralong nanowires tailored with trace Mo for the ethanol oxidation[J]. Nano Res., 2022, 15(4): 3230-3238. |
[35] | Hu Y Z, Guo X Y, Shen T, Zhu Y, Wang D L. Hollow porous carbon-confined atomically ordered PtCo3 intermetallics for an efficient oxygen reduction reaction[J]. ACS Catal., 2022, 12(9): 5380-5387. |
[36] | Chen C, Kang Y J, Huo Z Y, Zhu Z W, Huang W Y, Xin H L, Snyder J D, Li D G, Herron J A, Mavrikakis M, Chi M F, More K L, Li Y D, Markovic N M, Somorjai G A, Yang P D, Stamenkovic V R. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339-1343. |
[37] | Hu Y Z, Shen T, Zhao X R, Zhang J J, Lu Y, Shen J, Lu S F, Tu Z K, Xin H L L, Wang D L. Combining structurally ordered intermetallics with N-doped carbon confinement for efficient and anti-poisoning electrocatalysis[J]. Appl. Catal. B Environ., 2020, 279: 119370. |
[38] | Song T W, Chen M X, Yin P, Tong L, Zuo M, Chu S Q, Chen P, Liang H W. Intermetallic PtFe electrocatalysts for the oxygen reduction reaction: ordering degree-dependent performance[J]. Small, 2022, 18(31): 2202916. |
[39] | Xiong Y, Yang Y, Joress H, Padgett E, Gupta U, Yarlagadda V, Agyeman-Budu D N, Huang X, Moylan T E, Zeng R, Kongkanand A, Escobedo F A, Brock J D, Disalvo F J, Muller D A, Abru?a H D. Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales[J]. PNAS, 2019, 116(6): 1974-1983. |
[40] | Desario D Y, Disalvo F J. Ordered intermetallic Pt-Sn nanoparticles: exploring ordering behavior across the bulk phase diagram[J]. Chem. Mater., 2014, 26(8): 2750-2757. |
[41] | Cui M J, Yang C P, Hwang S, Yang M H, Overa S, Dong Q, Yao Y G, Brozena A H, Cullen D A, Chi M, Blum T F, Morris D, Finfrock Z, Wang X Z, Zhang P, Goncharov V G, Guo X F, Luo J, Mo Y F, Jiao F, Hu L B. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition[J]. Sci. Adv., 2022, 8(4): eabm4322. |
/
〈 |
|
〉 |