金属有机框架功能化的纳米通道对锶离子进行高灵敏度检测
收稿日期: 2024-04-30
修回日期: 2024-03-18
录用日期: 2024-06-11
网络出版日期: 2024-07-23
版权
Highly Sensitive Detection of Strontium Ions Using Metal-Organic Frameworks Functionalized Solid-State Nanochannels
Received date: 2024-04-30
Revised date: 2024-03-18
Accepted date: 2024-06-11
Online published: 2024-07-23
Copyright
锶-90是一种高放射性同位素,在食物链和骨骼结构中积累,对人类健康构成重大风险。在复杂的环境水样中,迫切需要一种高灵敏的锶-90检测策略。在这里,金属有机框架(metal organic frameworks)和特异性适配体修饰的固态纳米通道被设计用于高灵敏度的Sr2+检测。MOF导致的纳米通道有效孔径减小与适配体对Sr2+的特异性结合之间的协同作用放大了离子电流信号的差异,显著提高了检测灵敏度。MOF修饰的纳米通道对Sr2+表现出高灵敏度的检测,检测限(LOD)低至0.03 nmol·L-1,没有修饰MOF纳米片的AAO的LOD仅为1000 nmol·L-1。结果表明,MOF修饰的纳米通道对Sr2+的检测限LOD比未修饰MOF的纳米通道高约33,000倍,仿真模拟计算结果与这一实验趋势完全吻合。此外,加标回收实验实现了对各种水样中Sr2+的高度可靠性检测,回收率在94.00%至118.70%之间,变异系数低至2.89%至9.35%之间。APT/MOF/AAO传感系统在真实水样中表现出高回收率和低变异性,凸显了其在此类环境中的强大检测能力。这项研究为快速发展的先进纳米通道传感器领域及其在分析复杂样品方面包括环境污染物检测、食品分析、医疗诊断等的各种应用提供了宝贵的见解。
王旭刚 , 何正旭 , 丁德芳 , 罗雪芹 , 戴力 , 张炜奇 , 马群 , 黄羽 , 夏帆 . 金属有机框架功能化的纳米通道对锶离子进行高灵敏度检测[J]. 电化学, 2024 , 30(10) : 2414003 . DOI: 10.61558/2993-074X.3482
Strontium-90, a highly radioactive isotope, accumulates within the food chain and skeletal structure, posing significant risks to human health. There is a critical need for a sensitive detection strategy for Strontium-90 in complex environmental samples. Here, solid-state nanochannels, modified with metal-organic frameworks (MOF) and specific aptamers, were engineered for highly sensitive detection of strontium ion (Sr2+). The synergistic effect between the reduced effective diameter of the nanochannels due to MOF and the specific binding of Sr2+ by aptamers amplifies the difference in ionic current signals, enhancing detection sensitivity significantly. The MOF-modified nanochannels exhibit highly sensitive detection of Sr2+, with a limit of detection (LOD) being 0.03 nmol·L-1, whereas the LOD for anodized aluminum oxide (AAO) without the modified MOF nanosheets is only 1000 nmol·L-1. These findings indicate that the LOD of Sr2+ detected by the MOF-modified nanochannels is approximately 33,000 times higher than that by the nanochannels without MOF modification. Additionally, the highly reliable detection of Sr2+ in various water samples was achieved, with a recovery rate ranging from 94.00% to 118.70%. This study provides valuable insights into the rapidly advancing field of advanced nanochannel-based sensors and their diverse applications for analyzing complex samples, including environmental contaminant detection, food analysis, medical diagnostics, and more.
Key words: Nanochannel; Metal-organic frameworks; Sensor; Strontium ion; Sensitivity detection
[1] | Kaidarova A, Geraldi N R, Wilson R P, Kosel J, Meekan M G, Eguíluz V M, Hussain M M, Shamim A, Liao H, Srivastava M. Wearable sensors for monitoring marine environments and their inhabitants[J]. Nat. Biotechnol., 2023, 41(9): 1208-1220. |
[2] | da Costa B M, Duarte A C, Rocha-Santos T A P. Environmental monitoring approaches for the detection of organic contaminants in marine environments: A critical review[J]. Trends Environ. Anal. Chem., 2022, 33: e00154. |
[3] | Alam I, Rehman J U, Ahmad N, Nazir A, Hameed A, Hussain A. An overview on the concentration of radioactive elements and physiochemical analysis of soil and water in Iraq[J]. Rev. Environ. Health, 2020, 35(2): 147-155. |
[4] | Bolobajev J, Leier M, Vaasma T, Nilb N, Salupere S. Laboratory and pilot plant scale study on the removal of radium, manganese and iron from drinking water using hydrous manganese oxide slurry[J]. J. Environ. Chem. Eng., 2022, 10(6): 108942. |
[5] | Farouk M I H Z, Jamil Z, Latip M F A. Towards online surface water quality monitoring technology: A review[J]. Environ. Res., 2023, 238(Part1): 117147. |
[6] | Agberien A V, ?rmeci B. Monitoring of cyanobacteria in water using spectrophotometry and first derivative of absorbance[J]. Water, 2019, 12(1): 124. |
[7] | Xu Z H, Zhou W C, Dong Q C, Li Y, Cai D Y, Lei Y, Bagtzoglou A, Li B K. Flat flexible thin milli-electrode array for real-time in situ water quality monitoring in distribution systems[J]. Environ. Sci.-Wat. Res. Technol., 2017, 3(5): 865-874. |
[8] | Uppuluri K, Szwagierczak D, Fernandes L, Zaraska K, Lange I, Synkiewicz-Musialska B, Manjakkal L. A high-performance pH-sensitive electrode integrated with a multi-sensing probe for online water quality monitoring[J]. J. Mater. Chem. C, 2023, 11(44): 15512-15520. |
[9] | Lu Y K, Li P F, Yan H Y, Shen S G. Ionic liquid modified porous polymer as a dispersive filter extraction adsorbent for simple, sensitive, and efficient determination of chlorotriazine herbicides in irrigation water[J]. J. Agric. Food Chem., 2022, 70(4): 1327-1334. |
[10] | Izquierdo J E E, Cavallari M R, García D C, Oliveira J D D S, Nogueira V A M, Braga G D S, Ando Junior O H, Quivy A A, Kymissis I, Fonseca F J. Detection of water contaminants by organic transistors as gas sensors in a bottom-gate/bottom-contact cross-linked structure[J]. Sensors, 2023, 23(18): 7981. |
[11] | Novaes C G, Bezerra M A, da Silva E G P, dos Santos A M P, da Silva Romao I L, Neto J H S. A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP OES)[J]. Microchem J., 2016, 128: 331-346. |
[12] | Li Q, Ying Y L, Liu S C, Lin Y, Long Y T. Detection of single proteins with a general nanopore sensor[J]. ACS Sens., 2019, 4(5): 1185-1189. |
[13] | Ying Y L, Gao R, Hu Y X, Long Y T. Electrochemical confinement effects for innovating new nanopore sensing mechanisms[J]. Small Methods, 2018, 2(6): 1700390. |
[14] | Long Y T, Zhang M N. Self-assembling bacterial pores as components of nanobiosensors for the detection of single peptide molecules[J]. Sci. China Ser. B-Chem., 2009, 52(6): 731-733. |
[15] | Yang H, Qing G. Solid-state nanopores and nanochannels for the detection of biomolecules[J]. Chem. Phys. Rev., 2021, 2(2): 021306. |
[16] | Shen F Y, Dow W P, Liu A H, Lin J Y, Chang P H, Huang S M. Periodic pulse reverse Cu plating for through-hole filling[J]. ECS Electrochem. Lett., 2013, 2(5): D23-D25. |
[17] | Hou X, Zhang H C, Jiang L. Building bio‐inspired artificial functional nanochannels: From symmetric to asymmetric modification[J]. Angew. Chem. Int. Ed., 2012, 51(22): 5296-5307. |
[18] | Deng J Q, Liu C, Sun J S. DNA‐based nanomaterials for analysis of extracellular vesicles[J]. Adv. Mater., 2023: 2303092. |
[19] | Bodily T A, Ramanathan A, Wei S, Karkisaval A, Bhatt N, Jerez C, Haque M A, Ramil A, Heda P, Wang Y. In pursuit of degenerative brain disease diagnosis: dementia biomarkers detected by DNA aptamer-attached portable graphene biosensor[J]. Proc. Natl. Acad. Sci. U. S. A., 2023, 120(47): e2311565120. |
[20] | Ban D K, Liu Y, Wang Z, Ramachandran S, Sarkar N, Shi Z, Liu W, Karkisaval A G, Martinez-Loran E, Zhang F. Direct DNA methylation profiling with an electric biosensor[J]. ACS Nano, 2020, 14(6): 6743-6751. |
[21] | Wang J, Hou J, Zhang H C, Tian Y, Jiang L. Single nanochannel-aptamer-based biosensor for ultrasensitive and selective cocaine detection[J]. ACS Appl. Mater. Interfaces, 2018, 10(2): 2033-2039. |
[22] | Ma Q, Chu W J, Nong X L, Zhao J, Liu H, Du Q J, Sun J L, Shen J L, Lu S M, Lin M H, Huang Y, Xia F. Local Electric potential-driven nanofluidic ion transport for ultrasensitive biochemical sensing[J]. ACS Nano, 2024, 18(8): 6570-6578. |
[23] | Liu L X, Luo C H, Zhang J H, He X, Shen Y, Yan B, Huang Y, Xia F, Jiang L. Synergistic effect of bio‐inspired nanochannels: Hydrophilic DNA probes at inner wall and hydrophobic coating at outer surface for highly sensitive detection[J]. Small, 2022, 18(37): 2201925. |
[24] | Meng D, Hao C L, Cai J R, Ma W, Chen C, Xu C L, Xu L G, Kuang H. Tailored chiral copper selenide nanochannels for ultrasensitive enantioselective recognition and detection[J]. Angew. Chem. Int. Ed., 2021, 133(47): 25201-25208. |
[25] | Zeng H, Zhou S, Xie L, Liang Q R, Zhang X, Yan M, Huang Y A, Liu T Y, Chen P, Zhang L, Liang K, Jiang L, Kong B. Super-assembled mesoporous thin films with asymmetric nanofluidic channels for sensitive and reversible electrical sensing[J]. Biosens. Bioelectron., 2023, 222: 114985. |
[26] | Qiao Y J, Hu J J, Hu Y X, Duan C, Jiang W L, Ma Q, Hong Y N, Huang W H, Xia F, Lou X D. Detection of unfolded cellular proteins using nanochannel arrays with probe‐functionalized outer surfaces[J]. Angew. Chem. Int. Ed., 2023, 62(43): 202309671. |
[27] | Han B, Chakraborty A. Highly efficient adsorption desalination employing protonated-amino-functionalized MOFs[J]. Desalination, 2022, 541: 116045. |
[28] | Cheng P, Liu Y L, Wang X P, Fan K M, Li P, Xia S J. Regulating interfacial polymerization via constructed 2D metal-organic framework interlayers for fabricating nanofiltration membranes with enhanced performance[J]. Desalination, 2022, 544: 116134. |
[29] | Ying Y P, Zhang Z Q, Peh S B, Karmakar A, Cheng Y D, Zhang J, Xi L F, Boothroyd C, Lam Y M, Zhong C L, Zhao D. Pressure‐responsive two‐dimensional metal-organic framework composite membranes for CO2 separation[J]. Angew. Chem. Int. Ed., 2021, 60(20): 11318-11325. |
[30] | Doustkhah E, Hassandoost R, Khataee A, Luque R, Assadi M H N. Hard-templated metal-organic frameworks for advanced applications[J]. Chem. Soc. Rev., 2021, 50(5): 2927-2953. |
[31] | Qiu M, Zhu Z P, Wang D Y, Xu Z, Miao W N, Jiang L, Tian Y. Large-scale metal-organic framework nanoparticle monolayers with controlled orientation for selective transport of rare-earth elements[J]. J. Am. Chem. Soc., 2023, 145(22): 12275-12283. |
[32] | Ingram B, Sloan D. Strontium isotopic composition of estuarine sediments as paleosalinity-paleoclimate indicator[J]. Science, 1992, 255(5040): 68-72. |
[33] | Jiang Y, Ma W J, Qiao Y J, Xue Y F, Lu J H, Gao J, Liu N N, Wu F, Yu P, Jiang L, Mao L Q. Metal-organic framework membrane nanopores as biomimetic photoresponsive ion channels and photodriven ion pumps[J]. Angew. Chem. Int. Ed., 2020, 59(31): 12795-12799. |
[34] | Huang H, Suslov N B, Li N S, Shelke S A, Evans M E, Koldobskaya Y, Rice P A, Piccirilli J A. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore[J]. Nat. Chem. Biol., 2014, 10(8): 686-691. |
[35] | Pu F, Wu L, Ran X, Ren J S, Qu X G. G‐quartet‐based nanostructure for mimicking light‐harvesting antenna[J]. Angew. Chem. Int. Ed., 2015, 54(3): 892-896. |
[36] | Biffi G, Tannahill D, McCafferty J, Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells[J]. Nat. Chem., 2013, 5(3): 182-186. |
[37] | Lin Y T, Wang M L, Hsu C F, Dow W P, Lin S M, Yang J J. Through-hole filling in a Cu plating bath with functional insoluble anodes and acetic acid as a supporting electrolyte[J]. J. Electrochem. Soc., 2013, 160(12): D3149-D3153. |
[38] | Trajkovski M, Webba da Silva M, Plavec J. Unique structural features of interconverting monomeric and dimeric G-quadruplexes adopted by a sequence from the intron of the N-myc gene[J]. J. Am. Chem. Soc., 2012, 134(9): 4132-4141. |
[39] | Akhshi P, Mosey N J, Wu G. Free‐energy landscapes of ion movement through a g‐quadruplex DNA channel[J]. Angew. Chem. Int. Ed., 2012, 12(124): 2904-2908. |
[40] | Kankia B I, Marky L A. Folding of the thrombin aptamer into a G-quadruplex with Sr2+: stability, heat, and hydration[J]. J. Am. Chem. Soc., 2001, 123(44): 10799-10804. |
[41] | Wanunu M. Nanopores: A journey towards DNA sequencing[J]. Phys. Life Rev., 2012, 9(2): 125-158. |
/
〈 |
|
〉 |