锂氧电池中钌基电催化剂的研究进展
收稿日期: 2023-12-24
录用日期: 2024-04-26
网络出版日期: 2024-04-29
Recent Advances on Ruthenium-Based Electrocatalysts for Lithium-Oxygen Batteries
Received date: 2023-12-24
Accepted date: 2024-04-26
Online published: 2024-04-29
可充电锂氧(Li-O2)电池因其高能量密度而受到广泛关注。然而,缓慢的阴极动力学导致较高过电压和较差的循环性能。为了克服这一问题,不同种类的阴极催化剂已经开始被探索。其中,钌基电催化剂已被证明是促进析氧反应(OER)的极具前景的阴极催化剂。由于钌基催化剂与超氧根阴离子(O2-)中间体之间存在强相互作用,因此可以通过调节Li2O2的形态来促进过氧化锂(Li2O2)的分解。本文介绍了钌基电催化剂的设计策略,以提高其在锂氧电池中的OER催化动力学。不同结构的钌基催化剂已经被总结,包括金属颗粒(钌金属和合金)、单原子催化剂和不同底物(碳材料、金属氧化物/硫化物)负载钌的化合物,以调节钌基电催化剂的电子结构和基体结构。这些钌基电催化剂调节了对LiO2的吸附,提高了OER活性,抑制了副产物的形成,从而提升了Li-O2电池的可逆性和循环稳定性。然而,Li-O2电池仍然面临着许多挑战。其中之一是锂金属阳极的问题,锂的不稳定性和安全性一直是Li-O2电池研究的一个关键问题。此外,电解质的选择和阴极材料的优化也是当前研究的重点之一。为了提高Li-O2电池的性能,还需要对添加剂(即氧化还原介质)进行更深入的研究,以提高电池的循环寿命和能量密度。这些挑战的克服将需要跨学科的合作和持续的研究努力,以推动Li-O2电池的进一步发展。
王昱喆 , 蒋卓良 , 温波 , 黄耀辉 , 李福军 . 锂氧电池中钌基电催化剂的研究进展[J]. 电化学, 2024 , 30(8) : 2314004 . DOI: 10.61558/2993-074X.3466
Rechargeable lithium-oxygen (Li-O2) batteries have attracted wide attention due to their high energy density. However, the sluggish cathode kinetics results in high overvoltage and poor cycling performance. Ruthenium (Ru)-based electrocatalysts have been demonstrated to be promising cathode catalysts to promote oxygen evolution reaction (OER). It facilitates decomposition of lithium peroxide (Li2O2) by adjusting Li2O2 morphologies, which is due to the strong interaction between Ru-based catalyst and superoxide anion (O2-) intermediate. In this review, the design strategies of Ru-based electrocatalysts are introduced to enhance their OER catalytic kinetics in Li-O2 batteries. Different configurations of Ru-based catalysts, including metal particles (Ru metal and alloys), single-atom catalysts, and Ru-loaded compounds with various substrates (carbon materials, metal oxides/sulfides), have been summarized to regulate the electronic structure and the matrix architecture of the Ru-based electrocatalysts. The structure-property relationship of Ru-based catalysts is discussed for a better understanding of the Li2O2 decomposition mechanism at the cathode interface. Finally, the challenges of Ru-based electrocatalysts are proposed for the future development of Li-O2 batteries.
[1] | Liu T, Vivek J P, Zhao E W, Lei J, Garcia-Araez N, Grey C P. Current challenges and routes forward for nonaqueous lithium-air batteries[J]. Chem. Rev., 2020, 120(14): 6558-6625. |
[2] | Du D F, Zhu Z, Chan K Y, Li F J, Chen J. Photoelectrochemistry of oxygen in rechargeable Li-O2 batteries[J]. Chem. Soc. Rev., 2022, 51: 1846. |
[3] | Girishkumar G, McCloskey B, Luntz A C, Swanson S, Wilcke W. Lithium-air battery: Promise and challenges[J]. J. Phys. Chem. Lett., 2010, 1(14): 2193-2203. |
[4] | Lu Y C, Gallant B M, Kwabi D G, Harding J R, Mitchell R R, Whittingham M S, Shao-Horn Y. Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance[J]. Energy Environ. Sci., 2013, 6(3): 750-768. |
[5] | Jiang Z L, Wen B, Huang Y H, Guo Y H, Wang Y Z, Li F J. New reaction pathway of superoxide disproportionation induced by a soluble catalyst in Li-O2 batteries[J]. Angew. Chem. Int. Ed., 2024, 63(1): e202315314. |
[6] | Wandt J, Jakes P, Granwehr J, Gasteiger H A, Eichel R A. Singlet oxygen formation during the charging process of an aprotic lithium-oxygen battery[J]. Angew. Chem. Int. Ed., 2016, 55(24): 6892-6895. |
[7] | Jiang Z L, Xu G L, Yu Z, Zhou T H, Shi W K, Luo C S, Zhou H J, Chen L B, Sheng W J, Zhou M X, Cheng L, Assary R S, Sun S G, Sun H. High rate and long cycle life in Li-O2 batteries with highly efficient catalytic cathode configured with Co3O4 nanoflower[J]. Nano Energy, 2019, 64: 103896. |
[8] | Wen B, Zhu Z, Li F J. Advances and challenges on cathode catalysts for lithium oxygen batteries[J]. J. Electrochem., 2023, 29(2): 7-19. |
[9] | Zahoor A, Ghouri Z K, Hasmi S, Raza F, Ishtiaque S, Nadeem S, Ullah I, Nahm K S. Electrocatalysts for lithium-air batteries: Current status and challenges[J]. ACS Sustain. Chem. Eng., 2019, 7(17):14288-14320. |
[10] | Zhao T, Yao Y, Yuan Y F, Wang M L, Wu F, Amine K, Lu J. A universal method to fabricating porous carbon for Li-O2 battery[J]. Nano Energy, 2021, 82: 105782. |
[11] | Zhao B, Ye Z M, Kong X B, Han L, Xia Z Y, Chen K, Wang Q, Li M, Shang Y Y, Cao A Y. Orthogonal-channel, low-tortuosity carbon nanotube platforms for high-performance Li-O2 batteries[J]. ACS Nano, 2023, 17(18): 18382-18391. |
[12] | Tu Y C, Deng D H, Bao X H. Nanocarbons and their hybrids as catalysts for non-aqueous lithium-oxygen batteries[J]. J. Energy Chem., 2016, 25(6): 957-966. |
[13] | Zhou Y, Yin K, Gu Q F, Tao L, Li Y J, Tan H, Zhou J H, Zhang W S, Li H B, Guo S J. Lewis-acidic PtIr multipods enable high-performance Li-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60 (51): 26592-26598. |
[14] | Barile C J, Gewirth A A. Investigating the Li-O2 battery in an ether-based electrolyte using differential electrochemical mass spectrometry[J]. J. Electrochem. Soc., 2013, 160(4): A549. |
[15] | Jung H G, Jeong Y S, Park J B, Sun Y K, Scrosati B, Lee Y J. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries[J]. ACS Nano, 2013, 7(4): 3532-3539. |
[16] | Yang Y, Liu W, Wu N A, Wang X C, Zhang T, Chen L F, Zeng R, Wang Y M, Lu J T, Fu L, Li X, Zhuang L. Tuning the morphology of Li2O2 by noble and 3d metals: A planar model electrode study for Li-O2 battery[J]. ACS Appl. Mater. Interfaces, 2017, 9(23): 19800-19806. |
[17] | Bae Y, Park H, Ko Y, Kim H, Park S K, Kang K. Bifunctional oxygen electrocatalysts for lithium-oxygen batteries[J]. Batteries Supercaps, 2019, 2(4): 311-325. |
[18] | Zhang M, Zou L, Yang C Z, Chen Y, Shen Z R, Chi B. An all-nanosheet OER/ORR bifunctional electrocatalyst for both aprotic and aqueous Li-O2 batteries[J]. Nanoscale, 2019, 11(6): 2855-2862. |
[19] | Vankova S, Francia C, Amici J, Zeng J, Bodoardo S, Penazzi N, Collins G, Geaney H, O'Dwyer C. Influence of binders and solvents on stability of Ru/RuOx nanoparticles on ITO nanocrystals as Li-O2 battery cathodes[J]. ChemSusChem, 2017, 10(3): 575-586. |
[20] | Jung C Y, Zhao T S, Zeng L, Tan P. Vertically aligned carbon nanotube-ruthenium dioxide core-shell cathode for non-aqueous lithium-oxygen batteries[J]. J. Power Sources, 2016, 331: 82-90. |
[21] | Kwak K H, Kim D W, Kang Y, Suk J. Hierarchical Ru-and RuO2-foams as high performance electrocatalysts for rechargeable lithium-oxygen batteries[J]. J. Mater. Chem. A, 2016, 4(42): 16356-16367. |
[22] | Yang J B, Mi H W, Luo S, Li Y L, Zhang P X, Deng L B, Sun L N, Ren X Z. Atomic layer deposition of TiO2 on nitrogen-doped carbon nanofibers supported Ru nanoparticles for flexible Li-O2 battery: A combined DFT and experimental study[J]. J. Power Sources, 2017, 368: 88-96. |
[23] | Li F J, Chen Y, Tang D M, Jian Z L, Liu C, Golberg D, Yamada A, Zhou H S. Performance-improved Li-O2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode[J]. Energy Environ. Sci., 2014, 7(5): 1648-1652. |
[24] | Wu D F, Guo Z Y, Yin X B, Pang Q Q, Tu B B, Zhang L J, Wang Y G, Li Q W. Metal-organic frameworks as cathode materials for Li-O2 batteries[J]. Adv. Mater., 2014, 26(20): 3258-3262. |
[25] | Su D W, Dou S X, Wang G X. Hierarchical Ru nanospheres as highly effective cathode catalysts for Li-O2 batteries[J]. J. Mater. Chem. A, 2015, 3(36): 18384-18388. |
[26] | Ma S C, Wu Y, Wang J W, Zhang Y L, Zhang Y T, Yan X X, Wei Y, Liu P, Wang J P, Jiang K L, Fan S S, Xu Y, Peng Z Q. Reversibility of noble metal-catalyzed aprotic Li-O2 batteries[J]. Nano Lett., 2015, 15(12): 8084-8090. |
[27] | Kim J G, Kim Y, Noh Y, Lee S, Kim Y, Kim W B. Bifunctional hybrid catalysts with perovskite LaCo0.8Fe0.2O3 nanowires and reduced graphene oxide sheets for an efficient Li-O2 battery cathode[J]. ACS Appl. Mater. Interfaces, 2018, 10(6): 5429-5439. |
[28] | Lin Y, Moitoso B, Martinez-Martinez C, Walsh E D, Lacey S D, Kim J W, Dai L, Hu L, Connell J W. Ultrahigh-capacity lithium-oxygen batteries enabled by dry-pressed holey graphene air cathodes[J]. Nano Lett., 2017, 17(5): 3252-3260. |
[29] | Zhong X, Papandrea B, Xu Y X, Lin Z Y, Zhang H, Liu Y, Huang Y, Duan X F. Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions[J]. Nano Res., 2017, 10: 472-482. |
[30] | Sun B, Munroe P, Wang G X. Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance[J]. Sci. Rep., 2013, 3(1): 2247. |
[31] | Sun B, Chen S Q, Liu H, Wang G X. Mesoporous carbon nanocube architecture for high-performance lithium-oxygen batteries[J]. Adv. Funct. Mater., 2015, 25(28): 4436-4444. |
[32] | Song H Y, Xu S M, Li Y J, Dai J Q, Gong A, Zhu M W, Zhu C L, Chen C J, Chen Y A, Yao Y G, Liu B Y, Song J W, Pastel G, Hu L B. Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries[J]. Adv. Energy Mater., 2018, 8(4): 1701203. |
[33] | Liu M R, Sun K L, Zhang Q H, Tang T, Huang L L, Li X H, Zeng X, Y Hu J S, Liao S J. Rationally designed three-dimensional N-doped graphene architecture mounted with Ru nanoclusters as a high-performance air cathode for lithium-oxygen batteries[J]. ACS Sustain. Chem. Eng., 8(15): 6109-6117. |
[34] | Dai W R, Liu Y, Wang M, Lin M, Lian X, Luo Y N, Yang J L, Chen W. Monodispersed ruthenium nanoparticles on nitrogen-doped reduced graphene oxide for an efficient lithium-oxygen battery[J]. ACS Appl. Mater. Interfaces, 2021, 13(17): 19915-19926. |
[35] | Sun Z, Yang C S, Jiang F L, Zhang T. Chimerism of carbon by ruthenium induces gradient catalysis[J]. Adv. Funct. Mater., 2021, 31(34): 2104011. |
[36] | Cao D Q, Zhang S S, Yu F J, Wu Y P, Chen Y H. Carbon-free cathode materials for Li-O2 batteries[J]. Batteries Supercaps, 2019, 2(5): 428-439. |
[37] | Li F J, Tang D M, Chen Y, Golberg D, Kitaura H, Zhang T, Yamada A, Zhou H S. Ru/ITO: A carbon-free cathode for nonaqueous Li-O2 battery[J]. Nano lett., 2013, 13(10): 4702-4707. |
[38] | Li F J, Tang D M, Jian Z L, Liu D Q, Golberg D, Yamada A, Zhou H S. Li-O2 battery based on highly efficient Sb-doped tin oxide supported Ru nanoparticles[J]. Adv. Mater., 2014, 26(27): 4659-4664. |
[39] | Xu Y F, Chen Y, Xu G L, Zhang R X, Chen Z, Li J T, Huang L, Amine K, Sun S G. RuO2 nanoparticles supported on MnO2 nanorods as high efficient bifunctional electrocatalyst of lithium-oxygen battery[J]. Nano Energy, 2016, 28: 63-70. |
[40] | Wu X B, Zhang Y F, Chen S Y, Zhan X Y, Zhang H, Zhang L, Su L W, Shen C Q, Chen H, Wu H, Wang L B. Low-carbon CeOx/Ru@RuO2 nanosheets as bifunctional catalysts for lithium-oxygen batteries[J]. J. Alloys Compd., 2022, 924: 166354. |
[41] | Zhang S Q, Wang Y, Li D, Kang Z Y, Dong F L, Xie H M, Liu J. Ru-impregnated needle-like NiCo2O4 embedded in carbon textiles as O2 electrode for a flexible Li-O2 battery[J]. J. Alloys Compd., 2020, 825: 154054. |
[42] | Zou L, Jiang Y X, Cheng J F, Chen Y, Chi B, Pu J, Jian L. Bifunctional catalyst of well-dispersed RuO2 on NiCo2O4 nanosheets as enhanced cathode for lithium-oxygen batteries[J]. Electrochim. Acta, 2018, 262: 97-106. |
[43] | Yoon K R, Kim D S, Ryu W H, Ryu W H, Song S H, Youn D Y, Jung J W, Jeon S, Park Y J, Kim I D. Tailored combination of low dimensional catalysts for efficient oxygen reduction and evolution in Li-O2 batteries[J]. ChemSusChem, 2016, 9(16): 2080-2088. |
[44] | Yoon K R, Lee G Y, Jung J W, Kim N H, Kim S O, Kim I D. One-dimensional RuO2/Mn2O3 hollow architectures as efficient bifunctional catalysts for lithium-oxygen batteries[J]. Nano Lett., 2016, 16(3): 2076-2083. |
[45] | Lian Z, Lu Y C, Zhao S Z, Li Z J, Liu Q C. Engineering the electronic interaction between atomically dispersed Fe and RuO2 attaining high catalytic activity and durability catalyst for Li-O2 battery[J]. Adv. Sci., 2023, 10(9): 2205975. |
[46] | Kulkarni P, Nataraj S K, Balakrishna R G, Nagarajua D H, Reddy M V. Nanostructured binary and ternary metal sulfides: Synthesis methods and their application in energy conversion and storage devices[J]. J. Mater. Chem. A, 2017, 5(42): 22040-22094. |
[47] | Chandrasekaran S, Yao L, Deng L, Bowen C, Zhang Y, Chen S, Lin Z, Peng F, Zhang P. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond[J]. Chem. Soc. Rev., 2019, 48(15): 4178-4280. |
[48] | Fu G T, Wang J, Chen Y F, Liu Y, Tang Y W, Goodenough J B, Lee J M. Exploring indium-based ternary thiospinel as conceivable high-potential air-cathode for rechargeable Zn-Air batteries[J]. Adv. Energy Mater., 2018, 8(31): 1802263. |
[49] | Zheng R X, Shu C Z, Liu C H, Yan Y, He M, Li M L, Hu A J, Long J P. Tuning the unsaturated coordination center of electrocatalysts toward high-performance lithium-oxygen batteries[J]. ACS Sustain. Chem. Eng., 2021, 9(22): 7499-7507. |
[50] | Liang R X, Shu C Z, Hu A J, Xu C X, Zheng R X, Li M L, Guo Y W, He M, Yan Y, Long J P. Tuning the electronic band structure of mott-schottky heterojunctions modified with surface sulfur vacancy achieves an oxygen electrode with high catalytic activity for lithium-oxygen batteries[J]. J. Mater. Chem. A, 2020, 8(22): 11337-11345. |
[51] | Wang Y, Mao J, Meng X G, Yu L, Deng D H, Bao X H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications[J]. Chem. Rev., 2018, 119(3): 1806-1854. |
[52] | Cao L L, Luo Q Q, Chen J J, Wang L, Lin Y, Wang H J, Liu X K, Shen X Y, Zhang W, Liu W, Qi Z M, Jiang Z, Yang J L, Yao T. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction[J]. Nat. Commun., 2019, 10(1): 4849. |
[53] | Hu X L, Luo G, Zhao Q N, Wu D, Yang T X, Wen J, Wang R H, Xu C H, Hu N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2batteries[J]. J. Am. Chem. Soc., 2020, 142(39): 16776-16786. |
[54] | Dhiman M, Polshettiwar V. Supported single atom and pseudo-single atom of metals as sustainable heterogeneous nanocatalysts[J]. ChemCatChem, 2018, 10(5): 881-906. |
[55] | Alaf M, Tocoglu U, Kartal M, Akbulut H. Graphene supported heterogeneous catalysts for Li-O2 batteries[J]. Appl. Surf. Sci., 2016, 380: 185-192. |
[56] | Ren S, Yu Q, Yu X H, Rong P, Jiang L Y, Jiang J C. Graphene-supported metal single-atom catalysts: A concise review[J]. Sci. China Mater., 2020, 63(6): 903-920. |
[57] | Liu W Y, Su Q M, Yu L T, Du G H, Li C X, Zhang M, Ding S K, Xu B S. Understanding reaction mechanism of oxygen evolution reaction using Ru single atoms as catalyst for Li-O2 battery[J]. J. Alloys Compd., 2021, 886: 161189. |
[58] | He J, Zha M Q, Cui J S, Zeller M, Hunter A D, Yiu S M, Lee S T, Xu Z. T Convenient detection of Pd(II) by a metal-organic framework with sulfur and olefin functions[J]. J. Am. Chem. Soc., 2013, 135(21): 7807-7810. |
[59] | Xiao L Y, Wang Z L, Guan J Q. 2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges[J]. Coord. Chem. Rev., 2022, 472: 214777. |
[60] | Meng Z H, Chen N, Cai S C, Wang R, Wu J W, Tang H L. Recent advances of hierarchically porous bifunctional oxygen electrocatalysts derived from metal-organic frameworks for Zn-Air batteries[J]. Mater. Chem. Front., 2021, 5(6): 2649-2667. |
[61] | Jiang Z L, Wen B, Huang Y H, Li H X, Li F J. Metal-organic framework-based lithium-oxygen batteries[J]. Chem. Eur. J., 2022, 28(64): e202202130. |
[62] | Lv Q L, Zhu Z, Ni Y X, Geng J R, Li F J. Spin-state manipulation of two‐dimensional metal-organic framework with enhanced metal-oxygen covalency for lithium-oxygen batteries[J]. Angew. Chem. Int. Ed., 2022, 61(8): e202114293. |
[63] | Lv Q L, Zhu Z, Ni Y X, Wen B, Jiang Z L, Fang H Y, Li F J. Atomic ruthenium-riveted metal-organic framework with tunable d-band modulates oxygen redox for lithium-oxygen batteries[J]. J. Am. Chem. Soc., 2022, 144(50): 23239-23246. |
[64] | Zhang M D, Dai Q B, Zheng H G, Chen M D, Dai L M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting[J]. Adv. Mater., 2018, 30(10): 1705431. |
[65] | Li Z Q, Yang J Y, Ge X L, Deng Y P, Jiang G P, Li H B, Sun G R, Liu W W, Zheng Y, Dou H Z, Jiao H L, Zhu J B, Li N, Hu Y F, Feng M, Chen Z W. Self-assembly of colloidal MOFs derived yolk-shelled microcages as flexible air cathode for rechargeable Zn-air batteries[J]. Nano Energy, 2021, 89: 106314. |
[66] | Yao L X, Lin J, Li S, Wu Y H, Ding H R, Zheng H F, Xu W J, Xie T, Yue G H, Peng D L. Metal-organic frameworks-derived hollow dodecahedral carbon combined with FeNx moieties and ruthenium nanoparticles as cathode electrocatalyst for lithium-oxygen batteries[J]. J. Colloid Interface Sci., 2021, 596: 1-11. |
[67] | Tong Z, Lv C, Zhou Y, Zhang P F, Xiang C C, Li Z G, Wang Z, Liu Z K, Li, J T, Sun S G. Highly dispersed Ru-Co nanoparticles interfaced with nitrogen-doped carbon polyhedron for high efficiency reversible Li-O2 battery[J]. Small, 2022, 18(48): 2204836. |
[68] | Zhao S, Wang C C, Du D F, Li L, Chou S L, Li F J, Chen J. Bifunctional effects of cation additive on Na-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 133(6): 3242-3248. |
[69] | Yu Y, Yin Y B, Ma J L, Chang Z W, Sun T, Zhu Y H, Yang X Y, Liu T, Zhang X B. Designing a self-healing protective film on a lithium metal anode for long-cycle-life lithium-oxygen batteries[J]. Energy Storage Mater., 2019, 18: 382-388. |
[70] | Huang Y H, Geng J R, Jiang Z L, Ren M, Wen B, Chen J, Li F J. Solvation structure with enhanced anionic coordination for stable anodes in lithium-oxygen batteries[J]. Angew. Chem. Int. Ed., 2023, 62(30): e202306236. |
[71] | Huang Y H, Wen B, Jiang Z L, Li F J. Solvation chemistry of electrolytes for stable anodes of lithium metal batteries[J]. Nano Res., 2023, 16(6): 8072-8081. |
[72] | Luntz A C, McCloskey B D. Li-air batteries: Importance of singlet oxygen[J]. Nat. Energy, 2017, 2(5): 1-2. |
[73] | Jiang Z L, Huang Y H, Zhu Z, Gao S N, Lv Q L, Li F J. Quenching singlet oxygen via intersystem crossing for a stable Li-O2 battery[J]. Proc. Natl. Acad. Sci. USA, 2022, 119(34): e2202835119. |
/
〈 |
|
〉 |