欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

氧化铜光电化学分解水反应速率方程

  • 高博远 ,
  • 冷文华
展开
  • 浙江大学化学系,浙江 杭州 310058

录用日期: 2024-04-26

  网络出版日期: 2024-04-29

Rate Law for Photoelectrochemical Water Splitting over CuO

  • Bo-Yuan Gao ,
  • Wen-Hua Leng
Expand
  • Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China

Accepted date: 2024-04-26

  Online published: 2024-04-29

摘要

P型半导体光催化分解水是一种非常有前景的制氢方法。尽管对其反应动力学进行了很多研究并取得了不少进展,但建立其速率方程鲜见文献报道。本文采用积分电量和电化学阻抗谱等多种电化学方法研究了典型p型半导体氧化铜(CuO)光电化学分解水时光生电荷浓度、界面电荷转移速率常数及其与反应速率(光电流表示)之间的关系,力图建立其速率方程。结果表明,电极界面电荷转移速率常数与光生电荷浓度指数相关,光电流等于此速率常数乘以光生电荷浓度,反应级数(以光生电荷计)为一级,不同于常规化学反应速率方程和类似文献报道结果。这种光生电荷浓度相关的电荷转移速率常数主要是由于光生电荷在表面态中积累导致费米能级钉扎(伽伐伲电位是反应主要驱动力)和/或Frumkin行为(化学位是反应主要驱动力)引起。我们认为,该速率方程的建立对进一步研究CuO光电极析氢反应机理和设计CuO基高性能光催化剂具有指导意义。

本文引用格式

高博远 , 冷文华 . 氧化铜光电化学分解水反应速率方程[J]. 电化学, 2024 , 30(8) : 2312111 . DOI: 10.61558/2993-074X.3467

Abstract

Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen. However, the determination of rate law is rarely reported. To this purpose, copper oxide (CuO) is selected as a model photocathode in this study, and the photogenerated surface charge density, interfacial charge transfer rate constant and their relation to the water reduction rate (in terms of photocurrent) were investigated by a combination of (photo)electrochemical techniques. The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density, and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density. The reaction is first-order in terms of surface charge density. Such an unconventional rate law contrasts with the reports in literature. The charge density-dependent rate constant results from the Fermi level pinning (i.e., Galvani potential is the main driving force for the reaction) due to accumulation of charge in the surface states and/or Frumkin behavior (i.e., chemical potential is the main driving force). This study, therefore, may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.

参考文献

[1] Siavash M R, Hosseini-Hosseinabad S M, Masudy-Panah S, Seza A, Jalali M, Fallah-Arani H, Dabir F, Gholipour S, Abdi Y, Bagheri-Hariri M, Riahi-Noori N, Lim Y F, Hagfeldt A, Saliba M. Photoelectrochemical water-splitting using CuO-based electrodes for hydrogen production: A review[J]. Adv. Mater., 2021, 33(33): 2007285.
[2] Pastor E, Le Formal F, Mayer M T, Tilley S D, Francàs L, Mesa C A, Gr?tzel M, Durrant J R. Spectroelectrochemical analysis of the mechanism of (photo) electrochemical hydrogen evolution at a catalytic interface[J]. Nat. Commun., 2017, 8(1): 14280.
[3] Chiang C Y, Shin Y, Ehrman S. Li doped CuO film electrodes for photoelectrochemical cells[J]. J. Electrochem. Soc., 2011, 159(2): B227-B231.
[4] Bagtache R, Saib F, Abdmeziem K, Trari M. A new hetero-junction p-CuO/Al2O3 for the H2 evolution under visible light[J]. Int. J. Hydrogen Energy, 2019, 44(39): 22419-22424.
[5] Peter L M, Walker A B, Bein T, Hufnagel A G, Kondofersky I. Interpretation of photocurrent transients at semiconductor electrodes: Effects of band-edge unpinning[J]. J. Electroanal. Chem., 2020, 872: 114234.
[6] Masudy-Panah S, Siavash Moakhar R, Chua C S, Tan H R, Wong T I, Chi D, Dalapati G K. Nanocrystal engineering of sputter-grown CuO photocathode for visible-light-driven electrochemical water splitting[J]. ACS Appl. Mater. Interfaces, 2016, 8(2): 1206-1213.
[7] Artioli G A, Mancini A, Barbieri V R, Quattrini M C, Quartarone E, Mozzati M C, Drera G, Sangaletti L, Gombac V, Fornasiero P, Malavasi L. Correlation between deposition parameters and hydrogen production in CuO nanostructured thin films[J]. Langmuir, 2016, 32(6): 1510-1520.
[8] John S, Roy S C. CuO/Cu2O nanoflake/nanowire heterostructure photocathode with enhanced surface area for photoelectrochemical solar energy conversion[J]. Appl. Surf. Sci., 2020, 509: 144703.
[9] Masudy-Panah S, Eugene Y J K, Khiavi N D, Katal R, Gong X. Aluminum-incorporated P-CuO/N-ZnO photocathode coated with nanocrystal-engineered TiO2 protective layer for photoelectrochemical water splitting and hydrogen generation[J]. J. Mater. Chem. A, 2018, 6(25): 11951-11965.
[10] Kushwaha A, Moakhar R S, Goh G K L, Dalapati G K. Morphologically tailored CuO photocathode using aqueous solution technique for enhanced visible light driven water splitting[J]. J. Photochem. Photobiol., A., 2017, 337: 54-61.
[11] Moehl T, Suh J, Sévery L, Wick-Joliat R, Tilley S D. Investigation of (leaky) Ald TiO2 protection layers for water-splitting photoelectrodes[J]. ACS Appl. Mater. Interfaces, 2017, 9(50): 43614-43622.
[12] Bard A J, Bocarsly A B, Fan F R F, Walton E G, Wrighton M S. The concept of fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices[J]. J. Am. Chem. Soc., 1980, 102(11): 3671-3677.
[13] Upul Wijayantha K G, Saremi-Yarahmadi S, Peter L M. Kinetics of oxygen evolution at alpha-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy[J]. Phys. Chem. Chem. Phys., 2011, 13(12): 5264-5270.
[14] Zhang S F, Gao B Y, Leng W H. Kinetic difference in water photooxidation between TiO2 and WO3 electrodes by rate law Analysis[J]. ACS Appl. Energy Mater., 2023, 6(3): 1973-1981.
[15] Zhang S F, Leng W H, Liu K. Unconventional rate law of water photooxidation at TiO2 electrodes[J]. Phys. Chem. Chem. Phys., 2023, 25(18): 12891-12899.
[16] Zhang S F, Leng W H. Questioning the rate law in the analysis of water oxidation catalysis on haematite photoanodes[J]. Nat. Chem., 2020, 12: 1097-1098.
[17] Nong H N, Falling L J, Bergmann A, Klingenhof M, Tran H P, Sp?ri C, Mom R, Timoshenko J, Zichittella G, Knop-Gericke A, Piccinin S, Pérez-Ramírez J, Cuenya B R, Schl?gl R, Strasser P, Teschner D, Jones T E. Key role of chemistry versus bias in electrocatalytic oxygen evolution[J]. Nature, 2020, 587(7834): 408-413.
[18] Lim Y F, Chua C S, Lee C J J, Chi D. Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting[J]. Phys. Chem. Chem. Phys., 2014, 16(47): 25928-25934.
[19] Hinczewski D S, Hinczewski M, Tepehan F Z, Tepehan G G. Optical filters from SiO2 and TiO2 multi-layers using sol-gel spin coating method[J]. Sol. Energy Mater. Sol. Cells, 2005, 87(1): 181-196.
[20] Shangguan P P, Tong S H, Li H L, Leng W H. Enhanced photoelectrochemical oxidation of water over undoped and Ti-doped α-Fe2O3 electrodes by electrochemical reduction pretreatment[J]. RSC Adv., 2013, 10163: 10163-10167.
[21] Francas L, Corby S, Selim S, Lee D, Mesa C A, Godin R, Pastor E, Stephens I E L, Choi K S, Durrant J R. Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts[J]. Nat. Commun., 2019, 10(1): 5208.
[22] Mesa C A, Francas L, Yang K R, Garrido-Barros P, Pastor E, Ma Y, Kafizas A, Rosser T E, Mayer M T, Reisner E, Gratzel M, Batista V S, Durrant J R. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT[J]. Nat. Chem., 2020, 12(1): 82-89.
[23] Righi G, Plescher J, Schmidt F P, Campen R K, Fabris S, Knop-Gericke A, Schl?gl R, Jones T E, Teschner D, Piccinin S. On the origin of multihole oxygen evolution in haematite photoanodes[J]. Nat. Catal., 2022, 5(10): 888-899.
[24] Zhang S F, Leng W H. Quantitative determination the role of the intrabandgap states in water photooxidation over hematite electrodes[J]. J. Phys. Chem. Lett., 2023, 14(41): 9316-9323.
[25] Leng W H, Zhang Z, Zhang J Q, Cao C N. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy[J]. J. Phys. Chem. B, 2005, 109(31): 15008-15023.
[26] Peter L M. Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: the example of hematite[J]. J. Solid State Electrochem., 2012, 17(2): 315-326.
[27] Cheng X F, Leng W H, Liu D P, Xu Y M, Zhang J Q, Cao C N. Electrochemical preparation and characterization of surface-fluorinated TiO2 nanoporous film and its enhanced photoelectrochemical and photocatalytic properties[J]. J. Phys. Chem. C, 2008, 112(23): 8725-8734.
[28] Shangguan P P, Tong S P, Li H L, Leng W H. Influence of the potential on the charge-transfer rate constant of photooxidation of water over α-Fe2O3 and Ti-doped α-Fe2O3[J]. Acta Phys.-Chim. Sin., 2013, 29(9): 1954-1960.
文章导航

/