以掺氢天然气为燃料直接内重整固体氧化物电池堆的稳定性
收稿日期: 2023-08-15
修回日期: 2023-10-20
录用日期: 2023-10-31
网络出版日期: 2023-11-15
Stability of a Solid Oxide Cell Stack under Direct Internal-Reforming of Hydrogen-Blended Methane
Received date: 2023-08-15
Revised date: 2023-10-20
Accepted date: 2023-10-31
Online published: 2023-11-15
本文研究了掺氢天然气直接内重整平管型固体氧化物电池短堆的长期稳定性和衰减机理。通过约3000小时的实测实验,结果显示,电堆的总体衰减率为2.3% kh-1,电堆中三个金属连接板的面积比电阻分别增加了0.276 Ω·cm2、0.254 Ω·cm2和0.249 Ω·cm2,但电堆中两个电池的电压反而分别增加了3.38 mV·kh-1和3.78 mV·kh-1。电堆衰减主要由金属连接件表层氧化及其与阴极集流层材料反应生成SrCrO4物质,两者共同作用增大了电池与金属连接体间的界面电阻所致。结果表明,以掺氢天然气为燃料直接内重整平管型固体氧化物燃料电池电堆具有良好的稳定性。本文工作为掺氢天然气在固体氧化物燃料电池堆中的直接内重整应用提供了理论参考与实验依据。
汤亚飞 , 武安祺 , 韩贝贝 , 刘华 , 包善军 , 林王林 , 陈铭 , 官万兵 , Subhash C. Singhal . 以掺氢天然气为燃料直接内重整固体氧化物电池堆的稳定性[J]. 电化学, 2024 , 30(1) : 2314001 . DOI: 10.61558/2993-074X.3430
In this work, the long-term stability and degradation mechanism of a direct internal-reforming solid oxide fuel cell stack (IR-SOFC stack) using hydrogen-blended methane steam reforming were investigated. An overall degradation rate of 2.3%·kh-1 was found after the stack was operated for 3000 hours, indicating a good long-term stability. However, the voltages of the two cells in the stack were increased at the rates of 3.38 mV·kh-1 and 3.78 mV·kh-1, while the area specific resistances of the three metal interconnects in the stack were increased to 0.276 Ω·cm2, 0.254 Ω·cm2 and 0.249 Ω·cm2. The degradation of the stack might be caused by segregation of chromium on the surface of metal interconnects and the formation of SrCrO4 insulating phase in the current collecting layer of the cathode, which result in an increase in the interfacial resistance and a decrease in the stack performance. The long-term performance of a flat-tube IR-SOFC stack could be further improved by suitably coating the metal interconnect surface. This work provides theoretical and experimental guideline for the application of hydrogen-blended methane steam reforming in flat-tube IR-SOFC stacks.
[1] | Hanif H B, Motola M, Qayyum S, Rauf S, Khalid A, Li C J, Li C X. Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion[J]. Chem. Eng. J., 2022, 428: 132603. |
[2] | Hua B, Li M, Sun Y F, Zhang Y Q, Yan N, Li J, Etsell T, Sarkar P, Luo J L. Grafting doped manganite into nickel anode enables efficient and durable energy conversions in biogas solid oxide fuel cells[J]. Appl. Catal. B-Environ., 2017, 200: 174-181. |
[3] | Zhuang Z C, Li Y H, Yu R H, Xia L X, Yang J R, Lang Z Q, Zhu J X, Huang J Z, Wang J O, Wang Y, Fan L D, Wu J S, Zhao Z, Wang D S, Li Y D. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes[J]. Nat. Catal., 2022, 5: 300-310. |
[4] | Yang Y, Li T, Feng P Z, Wang X X, Wang S R, Li Y H, Shao Z P. Highly efficient conversion of oxygen-bearing low concentration coal-bed methane into power via solid oxide fuel cell integrated with an activated catalyst-modified anode microchannel[J]. Appl. Energy, 2022, 328: 120134. |
[5] | Alaedini A H, Tourani H K, Saidi M. A review of waste-to-hydrogen conversion technologies for solid oxide fuel cell (SOFC) applications: Aspect of gasification process and catalyst development[J]. J. Environ. Manage., 2023, 329: 117077. |
[6] | Kupecki J, Motylinski K, Milewski J. Dynamic analysis of direct internal reforming in a SOFC stack with electrolyte-supported cells using a quasi-1D model[J]. Appl. Energy, 2018, 227: 198-205. |
[7] | Menon V, Banerjee A, Dailly J, Deutschmann O. Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming[J]. Appl. Energy, 2015, 149: 161-175. |
[8] | Sang J K, Liu S, Yang J, Wu T, Luo X, Zhao Y M, Wang J X, Guan W B, Chai M R, Singhal S C. Power generation from flat-tube solid oxide fuel cells by direct internal dry reforming of methanol: A route for simultaneous utilization of CO2 and biofuels[J]. Chem. Eng. J., 2023, 457: 141189. |
[9] | Fan L Y, Li C E, Aravind P V, Weiwei Cai d, Han M F, Brandon N. Methane reforming in solid oxide fuel cells: Challenges and strategies[J]. J. Power Sources, 2022, 538: 231573. |
[10] | Lee K X, Hu B X, Dubey P K, Anisur M R, Belko S, Aphale A N, Singh P. High-entropy alloy anode for direct internal steam reforming of methane in SOFC[J]. Int. J. Hydrog. Energy, 2022, 47(90): 38372-38385. |
[11] | Lanzini A, Leone P, Guerra C, Smeacetto F, Brandon N P, Santarelli M. Durability of anode supported solid oxides fuel cells (SOFC) under direct dry-reforming of methane[J]. Chem. Eng. J., 2013, 220: 254-263. |
[12] | Zhang H, Liu W, Wang J X, Yang J, Chen Y, Guan W B, Singhal S C. Power generation from a symmetric flat-tube solid oxide fuel cell using direct internal dry-reforming of methane[J]. J. Power Sources, 2021, 516: 230662. |
[13] | Niakolas D K, Ouweltjes J P, Rietveld G, Dracopoulos V, Neophytides S G. Au-doped Ni/GDC as a new anode for SOFCs operating under rich CH4 internal steam reforming[J]. Int. J. Hydrog. Energy, 2010, 35(15): 7898-7904. |
[14] | Lin Y C, Wei W C J. Porous Cu-Ni-YSZ cermets using CH4 fuel for SOFC. Int. J. Hydrog. Energy, 2020, 45(46): 24253-24262. |
[15] | Zhang Y L, Xu N, Fan H, Han M F. La0.6Sr0.4Co0.2Fe0.8O3-δ nanoparticles modified Ni-based anode for direct methane-fueled SOFCs[J]. Energy Procedia, 2019, 158: 2250-2255. |
[16] | Lin K W, Wu H W. Hydrogen-rich syngas production and carbon dioxide formation using aqueous urea solution in biogas steam reforming by thermodynamic analysis[J]. Int. J. Hydrog. Energy, 2020, 45(20): 11593-11604. |
[17] | Kalai D Y, Stangeland K, Jin Y Y, Tucho W M, Yu Z X. Biogas dry reforming for syngas production on La promoted hydrotalcite-derived Ni catalysts[J]. Int. J. Hydrog. Energy, 2018, 43(42): 19438-19450. |
[18] | Labanca A R C, Cunha A G, Ribeiro R P, Zucolotto C G, Cevolani M B, Schettino M A. Technological solution for distributing vehicular hydrogen using dry plasma reforming of natural gas and biogas[J]. Renew. Energy, 2022, 201: 11-21. |
[19] | de Souza T A Z, Coronado C J R, Silveira J L, Pint G M. Economic assessment of hydrogen and electricity cogeneration through steam reforming-SOFC system in the Brazilian biodiesel industry[J]. J. Clean Prod., 2021, 279: 123814. |
[20] | Chou Y S, Huang M H, Hsu N Y, Jeng K T, Lee R Y, Yen S C. Development of ring-shape supported catalyst for steam reforming of natural gas in small SOFC systems[J]. Int. J. Hydrog. Energy, 2016, 41(30): 12953-12961. |
[21] | Wu A Q, Li C L, Han B B, Hanson S, Guan W B, Singhal S C. Effect of air addition to the air electrode on the stability and efficiency of carbon dioxide electrolysis by solid oxide cells[J]. Int. J. Hydrog. Energy, 2016, 47(58): 24268-24278. |
[22] | Wu A Q, Li C L, Han B B, Liu W, Zhang Y, Hanson S, Guan W B, Singhal S C. Pulsed electrolysis of carbon dioxide by large-scale solid oxide electrolytic cells for intermittent renewable energy storage[J]. Carbon Energy, 2023, 5(4): 1-12. |
[23] | Li C L, Wu A Q, Xi C Q, Guan W B, Chen L, Singhal S C. High reversible cycling performance of carbon dioxide electrolysis by flat-tube solid oxide cell[J]. Appl. Energy, 2022, 314: 118969. |
[24] | Hu Y Z, Gao J T, Li C X, Li C J. Thermally sprayed MCO/FeCr24 interconnector with improved stability for tubular segmented-in-series SOFCs[J]. Appl. Surf. Sci., 2022, 587: 152861. |
[25] | Pe?a-álvarez M, del Corro E, Langa F, Baonzaa V G, Taravillo M. Morphological changes in carbon nanohorns under stress: a combined Raman spectroscopy and TEM study[J]. RSC Adv., 2016, 6: 49543-49550. |
[26] | Tan K H, Rahman H A, Taib H. Coating layer and influence of transition metal for ferritic stainless steel interconnector solid oxide fuel cell: A review[J]. Int. J. Hydrog. Energy, 2016, 44(58): 30591-30605. |
[27] | Xu Y J, Wang S R, Liu R Z, Wen T L, Wen Z Y. A novel bilayered Sr0.6La0.4TiO3/La0.8Sr0.2MnO3 interconnector for anode-supported tubular solid oxide fuel cell via slurry-brushing and co-sintering process[J]. J. Power Sources, 2011, 196(3): 1338-1341. |
[28] | Horita T, Kishimoto H, Yamaji K, Xiong Y P, Sakai N, Brito M E, Yokokawa H. Oxide scale formation and stability of Fe-Cr alloy interconnects under dual atmospheres and current flow conditions for SOFCs[J]. J. Electrochem. Soc., 2006, 153: A2007. |
[29] | Horita T, Kshimoto H, Yamaji K, Sakai N, Xiong Y P, Brito M E, Yokokawa H. Anomalous oxidation of ferritic interconnects in solid oxide fuel cells[J]. Int. J. Hydrog. Energy, 2008, 33(14): 3962-3969. |
[30] | Zhao L, Zhang J, Becker T, Jiang S P. Raman spectroscopy study of chromium deposition on La0.6Sr0.4Co0.2Fe0.8O3-δ cathode of solid oxide fuel cells[J]. J. Electrochem. Soc., 2014, 161: F687. |
[31] | Li X X, Blinn K, Chen D C, Liu M L. In situ and surface-enhanced Raman spectroscopy study of electrode materials in solid oxide fuel cells[J]. Electrochem. Energy Rev., 2018, 1: 433-459. |
[32] | Church B C, Sanders T H, Speyer R F, Cochran J K. Thermal expansion matching and oxidation resistance of Fe-Ni-Cr interconnect alloys[J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2007, 452: 334-340. |
[33] | Wu J W, Liu X B. Recent development of SOFC metallic interconnect[J]. J. Mater. Sci. Technol., 2010, 26(4): 293-305. |
[34] | Tkachenko S, Brodnikovskyi D, Cizek J, Komarov P, Brodnikovskyi Y, Tymoshenko Y, Csáki ?, Pinchuk M, Vasylyev O, ?elko L, Gadzyra M, Chráska T. Novel Ti-Si-C composites for SOFC interconnect materials: Production optimization[J]. Ceram. Int., 2022, 48(19): 27785-27798. |
/
〈 |
|
〉 |