欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

电化学脱卤氘化研究进展

  • 李鹏飞 ,
  • 寇广生 ,
  • 亓丽萍 ,
  • 仇友爱
展开
  • 南开大学化学院元素有机化学国家重点实验室,天津 300071

收稿日期: 2023-10-29

  录用日期: 2024-01-05

  网络出版日期: 2024-01-15

Recent Advance in Electrochemical Dehalogenative Deuteration

  • Peng-Fei Li ,
  • Guang-Sheng Kou ,
  • Li-Ping Qi ,
  • You-Ai Qiu
Expand
  • State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China

Received date: 2023-10-29

  Accepted date: 2024-01-05

  Online published: 2024-01-15

摘要

近年来,含有氘原子的化合物在包括材料和生物医药在内的各个领域中的重要性日益增加,被广泛应用于化学和生物学的机制研究中,将氘原子引入有机化合物已经成为药物分子发展的重要方向之一。同时,在非生物活性物质的活体内氚标记的化合物也发挥了重要作用。自美国食品药品监督管理局(FDA)批准的第一种用于临床治疗的氘化药物问世以来,氘标记的化合物就迅速成为人们关注的焦点,各种有机化合物的氘化方法被广泛开发。其中,卤化物的还原氘化具有高选择性的优势,但是大部分反应策略受到氘源和催化模式的限制。有机电合成作为一种相对绿色的催化模式以及其对氧化还原反应的广泛适应性,电化学卤化物的还原氘化成为替代传统卤-氘原子交换的重要方法之一,它避免了传统方法中过渡金属催化剂、金属试剂及昂贵氘代试剂的使用。近年来卤化物的电化学脱卤氘化得到很快的的发展,电化学脱卤氘化通常仅需要重水作为最廉价易得的氘源就能高效得到高氘代掺入率的产物,这为氘代化合物的合成与发展提供了重要的支撑。本文根据卤化物的类型,综述了电化学条件下芳基卤化物和烷基卤化物还原氘化的最新进展以及其反应机制,有望为未来更为广泛的氘代方法研究以及氘代化合物的研究提供一定的基础.

本文引用格式

李鹏飞 , 寇广生 , 亓丽萍 , 仇友爱 . 电化学脱卤氘化研究进展[J]. 电化学, 2024 , 30(5) : 2313005 . DOI: 10.61558/2993-074X.3442

Abstract

In recent years, the incorporation of deuterium atoms into organic compounds has emerged as a vital focus in the development of pharmaceutical molecules. This trend is driven by the increasing recognition of the significance of compounds containing deuterium atoms across various domains, including materials and biopharmaceuticals, where they have found widespread applications in mechanistic studies within the realms of chemistry and biology. Meanwhile, organic electrochemistry, as a relatively environmentally friendly catalytic mode with broad adaptability to redox reactions, has emerged as a crucial alternative to traditional halogen-deuterium exchange in the context of the reduction deuteration of halides. This approach circumvents the uses of transition metal catalysts and toxic deuterated reagents which are commonly employed in traditional methods. Notably, electrocatalytic dehalogenation with deuterium incorporation typically relies on heavy water as the deuterium source, ensuring high yields and significant deuterium incorporation. In recent years, electrochemically dehalogenative deuteration of halides has made substantial progress, providing critical support for the synthesis and development of deuterated compounds. This article offers a comprehensive overview of the latest advancements in electrochemical reductive deuteration of both aromatic and alkyl halides, categorizing the progress according to the type of halide and delving into the underlying reaction mechanisms.

参考文献

[1] O’Ferrall R A M. A pictorial representation of zero-point energy and tunnelling contributions to primary hydrogen isotope effects[J]. J. Phys. Org. Chem., 2010, 23(7): 572-579.
[2] Pirali T, Serafini M, Cargnin S, Genazzani A A. Applications of deuterium in medicinal chemistry[J]. J. Med. Chem., 2019, 62(11): 5276-5297.
[3] Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent developments for the deuterium and tritium labeling of organic molecules[J]. Chem. Rev., 2022, 122(6): 6634-6718.
[4] Schmidt C. First deuterated drug approved[J]. Nat. Biotechnol., 2017, 35: 493-494.
[5] Isin E M, Elmore C S, Nilsson G N, Thompson R A, Weidolf L. Use of radiolabeled compounds in drug metabolism and pharmacokinetic studies[J]. Chem. Res. Toxicol., 2012, 25(3): 532-542.
[6] Mullard A. Deuterated drugs draw heavier backing[J]. Nat. Rev. Drug Discov., 2016, 15: 219-221.
[7] Wiberg K B. The deuterium isotope effect[J]. Chem. Rev., 1955, 55: 713-743.
[8] Gómez-Gallego M, Sierra M A. Kinetic isotope effects in the study of organometallic reaction mechanisms[J]. Chem. Rev., 2011, 111(8): 4857-4963.
[9] Yu R P, Hesk D, Rivera N, Pelczer I, Chirik P J. Iron-catalysed yritiation of pharmaceuticals[J]. Nature, 2016, 529: 195-199.
[10] Loh Y Y, Nagao K, Hoover A J, Hesk D, Rivera N R, Colletti S L, Davies I W, MacMillan D W C. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds[J]. Science, 2017, 358(6367): 1182-1187.
[11] Atzrodt J, Derdau V, Kerr W J, Reid M. C-H functionalisation for hydrogen isotope exchange[J]. Angew. Chem. Int. Ed., 2018, 57(12): 3022-3047.
[12] Geng H H, Chen X B, Gui J J, Zhang Y T, Shen Z Y, Qian P F, Chen J W, Zhang S L, Wang W. Practical synthesis of C1 deuterated aldehydes enabled by NHC catalysis[J]. Nat. Catal., 2019, 2: 1071-1077.
[13] Puleo T R, Strong A J, Bandar J S. Catalytic alpha-selective deuteration of styrene derivatives[J]. J. Am. Chem. Soc., 2019, 141(4): 1467-1472.
[14] Li W, Rabeah J, Bourriquen F, Yang D, Kreyenschulte C, Rockstroh N, Lund H, Bartling S, Surkus A E, Junge K, Brückner A, Lei A, Beller M. Scalable and selective deuteration of (hetero)arenes[J]. Nat. Chem., 2022, 14: 334-341.
[15] Xia A Y, Xie X, Hu X P, Xu W, Liu Y H. Dehalogenative deuteration of unactivated alkyl halides using D2O as the deuterium source[J]. J. Org. Chem., 2019, 84(21): 13841-13857.
[16] Yoshida J, Kataoka K, Horcajada R, Nagaki A. Modern strategies in electroorganic synthesis[J]. Chem. Rev., 2008, 108(7): 2265-2299.
[17] Francke R, Little R D. Redox catalysis in organic electrosynthesis: basic principles and recent developments[J]. Chem. Soc. Rev., 2014, 43(8): 2492-2521.
[18] Yan M, Kawamata Y, Baran P S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance[J]. Chem. Rev., 2017, 117(21): 13230-13319.
[19] Sauermann N, Meyer T H, Qiu Y, Ackermann L. Electrocatalytic C-H activation[J]. ACS Catal., 2018, 8(8): 7086-7103.
[20] Yuan Y, Lei A W. Electrochemical oxidative cross-coupling with hydrogen evolution reactions[J]. Acc. Chem. Res., 2019, 52(12): 3309-3324.
[21] Xiong P, Xu H C. Chemistry with electrochemically generated N-centered radicals[J]. Acc. Chem. Res., 2019, 52(12): 3339-3350.
[22] Jiao K J, Xing Y K, Yang Q L, Qiu H, Mei T S. Site-selective C-H functionalization via synergistic use of electrochemistry and transition metal catalysis[J]. Acc. Chem. Res., 2020, 53(2): 300-310.
[23] Ro?ckl J L, Pollok D, Franke R, Waldvogel S R. A decade of electrochemical dehydrogenative C, C-coupling of aryls[J]. Acc. Chem. Res., 2020, 53(3): 45-61.
[24] Siu J C, Fu N, Lin S. Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery[J]. Chem. Res., 2020, 53: 547-560.
[25] Wiebe A, Lips S, Schollmeyer D, Franke R, Waldvogel S R. Single and twofold metal- and reagent-free anodic C-C cross-coupling of phenols with thiophenes[J]. Angew. Chem. Int. Ed., 2017, 56(46): 14727-14731.
[26] Hamby T B, LaLama M J, Sevov C S. Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3-Csp2 coupling[J]. Science, 2022, 376(6591): 410-416.
[27] Cai C Y, Lai X L, Wang Y, Hu H, Song J, Yang Y, Wang C, Xu H C. Photoelectrochemical asymmetric catalysis enables site- and enantioselective cyanation of benzylic C-H bonds[J]. Nat. Catal., 2022, 5: 943-951.
[28] Gao Y, Zhang B, He J, Baran P S. Ni-electrocatalytic enantioselective doubly decarboxylative C(sp3)-C(sp3) cross coupling[J]. J. Am. Chem. Soc., 2023, 145(21): 11518-11523.
[29] Tong X, Yang Z P, Del Angel Aguilar C E, Fu G C. Iron-catalyzed reductive cross-coupling of alkyl electrophiles with olefins[J]. Angew. Chem. Int. Ed., 2023, 62(34): e202306663.
[30] Xiong P, Xu H C. Chemistry with electrochemically generated N-centered radicals[J]. Acc. Chem. Res., 2019, 52(12): 3339-3350.
[31] Kawamata Y. Vantourout J C, Hickey D P, Bai P, Chen L, Hou Q, Qiao W, Barman K, Edwards M A, Garrido-Castro A F, deGruyter J N, Nakamura H, Knouose K, Qin C, Clay K J, Bao D, Li C, Starr J T, Garcia-Irizarry C, Sach N, White H S, Neurock M, Minteer S D, Baran P S. Electrochemically driven, Ni-catalyzed aryl amination: Scope, nechanism, and applications[J]. J. Am. Chem. Soc., 2019, 141(15): 6392-6402.
[32] Liu D, Liu Z R, Ma C, Jiao K J, Sun B, Wei L, Lefranc J, Herbert S, Mei T S. Nickel-catalyzed N-arylation of NH-sulfoximines with aryl halides via paired electrolysis[J]. Angew. Chem. Int. Ed., 2021, 60(17): 9444-9449.
[33] Shen T, Lambert T H. Electrophotocatalytic diamination of vicinal C-H bonds[J]. Science, 2021, 371(6529): 620-626.
[34] Hou Z W, Liu D J, Xiong P, Lai X L, Song J, Xu H C. Site-selective electrochemical benzylic C-H amination[J]. Angew. Chem. Int. Ed., 2021, 60(6): 2943-2947.
[35] Kurono N, Honda E, Komatsu F, Orito K, Tokuda M. Regioselective synthesis of substituted 1-indanols, 2,3-dihydrobenzo-furans and 2,3-dihydroindoles by electrochemical radical cyclization using an arene mediator[J]. Tetrahedron, 2004, 60(8): 1791-1801.
[36] Zhang W, Lin S. Electroreductive carbofunctionalization of alkenes with alkyl bromides via a radical-polar crossover mechanism[J]. J. Am. Chem. Soc., 2020, 142(49): 20661-20670.
[37] Siu J C, Fu N, Lin S. Catalyzing electrosynthesis: A homogeneous electrocatalytic approach to reaction discovery[J]. Acc. Chem. Res., 2020, 53(3): 547-560.
[38] Dong X, Roeckl J L, Waldvogel S R, Morandi B. Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations[J]. Science, 2021, 371(6528): 507-514.
[39] Zhang Q Y, Lu P X, Wang S L, Li L X. Qua G R, Guo H M. Electrochemical enantioselective dihydroxylation reaction of N-alkenyl nucleobases for the construction of chiral acyclic nucleosides[J]. Org. Chem. Front., 2022, 9(18): 4818-4822.
[40] Cai C Y, Zheng Y T, Li J F, Xu H C. Cu-electrocatalytic diazidation of alkenes at ppm catalyst loading[J]. J. Am. Chem. Soc., 2022, 144(27): 11980-11985.
[41] Zhang B, Gao Y, Hioki Y, Oderinde M S, Qiao J X, Rodriguez K X, Zhang H J, Kawamata Y, Baran P S. Ni-electrocatalytic Csp3-Csp3 doubly decarboxylative coupling[J]. Nature, 2022, 606: 313-318.
[42] Zhang W, Lu L X, Zhang W, Wang Y, Ware S D, Mondragon J, Rein J, Strotman N, Lehnherr D, See K A, Lin S. Electrochemically driven cross-electrophile coupling of alkyl halides[J]. Nature, 2022, 604: 292-297.
[43] Liu Y, Li P, Wang Y, Qiu Y. Electroreductive cross-electrophile coupling (eXEC) reactions[J]. Angew. Chem. Int. Ed., 2023, 62: e202306679.
[44] Sun G Q, Zhang W, Liao L L, Li L, Nie Z H, Zhang J G, Wu Z, Yu D G. Nickel-catalyzed electrochemical carboxylation of unactivated aryl and alkyl halides with CO2[J]. Nat. Commun., 2021, 12: 7086.
[45] Hamby T B, LaLama M J, Sevov C S. Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3-Csp2 coupling[J]. Science, 2022, 376(6591): 410-416.
[46] Taily I M, Saha D, Banerjee P. Direct synthesis of paracetamol via site-selective electrochemical ritter-type C-H amination of phenol[J]. Organic Letters, 2022, 24(12): 2310-2314.
[47] Jat P K, Dabaria K K, Bai R, Yadav L, Badsara S S. Electrochemical bisarylation of carbonyls: a direct synthetic strategy for bis(indolyl)methane[J]. J. Org. Chem., 2022, 87(19): 12975-12985.
[48] Lei C, Liang F Y, Li J, Chen W Q, Huang B B. Electrochemical reductive dechlorination of chlorinated volatile organic compounds (Cl-VOCs): Effects of molecular structure on the dehalogenation reactivity and mechanisms[J]. Chem. Eng. J., 2019, 358: 10545-1064.
[49] Mazzucato M, Isse A A, Durante C. Dissociative electron transfer mechanism and application in the electrocatalytic activation of organic halides[J]. Curr. Opin. Electrochem., 2023, 39: 101254.
[50] Cockrell J R, Murray R W. Deuterium labeling by electrochemical reactions[J]. J. Electrochem. Soc., 1972, 119: 849.
[51] Renaud R N. Electrochemical synthesis of deuterio organic compounds. I. electrochemical reduction of 1-halonaphthalenes and synthesis of 1-chloro-4-methylnaphthalene[J]. Can. J. Chem., 1974, 52(3): 376-380.
[52] Kimura M, Miyahara H, Moritani N, Sawaki Y. Electroreductive dehalogenation of chlorinated aromatic ethers. Unexpected electrogenerated base-catalyzed reactions[J]. J. Org. Chem., 1990, 55(12): 3897-3902.
[53] Lu L J, Li H, Zheng Y F, Bu F X, Lei A W. Facile and economical electrochemical dehalogenative deuteration of (hetero)aryl halides[J]. CCS Chem., 2020, 3(11): 2669-2675.
[54] Liu C B, Han S Y, Li M Y, Chong X D, Zhang B. Electrocatalytic deuteration of halides with D2O as the deuterium source over a copper nanowire arrays cathode[J]. Angew. Chem. Int. Ed., 2020, 59(42): 18527-18531.
[55] Yang K M, Feng T, Qiu Y A. Organo-mediator enabled electrochemical deuteration of styrenes[J]. Angew. Chem. Int. Ed., 2023, e202312803.
[56] Wang Y W, Zhao Z W, Pan D, Wang S Y, Jia K P, Ma D K, Yang G Q, Xue X S, Qiu Y A. Metal-free electrochemical carboxylation of organic halides in the presence of catalytic amounts of an organomediator[J]. Angew. Chem. Int. Ed., 2022, 61(41): e202210201.
[57] Francke R, Little R D. Redox catalysis in organic electrosynthesis: basic principles and recent developments[J]. Chem. Soc. Rev., 2014, 43(8): 2492-2521.
[58] Qin S Y, Lei C, Wang X X, Chen W Q, Huang B B. Electrocatalytic activation of organic chlorides via direct and indirect electron transfer using atomic vacancy control of palladium-based catalyst[J]. Cell Reports Phys. Sci. 2022, 3(1): 100713.
[59] Mitesudo D, Okada T, Shimohara S, Mandai H, Suga S. Electro-reductive halogen-deuterium exchange and methylation of aryl halides in acetonitrile[J]. Electrochemistry, 2013, 81(5): 362-364.
[60] Zhang B, Qiu C T, Wang S, Gao H, Yu K Y, Zhang Z F, Ling X, Ou W, Su C L. Electrocatalytic water-splitting for the controllable and sustainable synthesis of deuterated chemicals[J]. Science Bulletin, 2021, 66(6): 562-569.
[61] Li P F, Kou G S, Feng T, Wang M Y, Qiu Y A. Electrochemical NiH-catalyzed C(sp3)-C(sp3) coupling of alkyl halides and alkyl alkenes[J]. Angew. Chem. Int. Ed., 2023, 62(44): e202311941.
[62] Hioki Y, Costantini M, Griffin J, Harper K C, Merini M P, Nissl B, Kawamata Y, Baran P S. Overcoming the limitations of Kolbe coupling with waveform-controlled electrosynthesis[J]. Science, 2023, 380(6640): 81-87.
[63] Li P F, Guo C C, Wang S Y, Ma D K, Feng T, Wang Y W, Qiu Y A. Facile and general electrochemical deuteration of unactivated alkyl halides[J]. Nat. Commun., 2022, 13: 3774.
[64] Wood D, Lin S. Deuterodehalogenation under net reductive or redox-neutral conditions enabled by paired electrolysis[J]. Angew. Chem. Int. Ed., 2023, 62(15): e202218858.
[65] Shen Z J, Zhu C, Zhang X, Yang C, Rueping M, Guo L, Xia W. Organoboron reagent-controlled selective (deutero)hydrodefluorination[J]. Angew. Chem. Int. Ed., 2023, 62(7): e202217244.
[66] Schneider F, Bradbury M, Baillie T A, Stamler D, Hellriegel E, Cox D S, Loupe P S, Savola J M, Rabinovich-guilatt L. Pharmacokinetic and metabolic profile of deutetrabenazine (TEV-50717) compared with tetrabenazine in healthy volunteers[J]. Clin. Transl. Sci., 2020, 13(4): 707-717.
[67] Falb E, Ulanenko K, Tor A, Gottesfeld R, Weitman M, Afri M, Gottlieb H, Hassner A. A highly efficient Suzuk-Miyaura methylation of pyridines leading to the drug pirfenidone and its CD3 version (SD-560)[J]. Green Chem., 2017, 19(21): 5046-5053.
[68] Khoury R, Marx C, Mirgati S, Velury D, Chakkamparambil B, Grossberg G T. AVP-786 as a promising treatment option for Alzheimer’s Disease including agitation[J]. Expert. Opin. Pharmacother., 2021, 22(7): 783-795.
[69] Cheng J M, Sheng J, Cheng X. Synthesis of methyl-d3 arene via electrochemical deuterodefluorination of trifluoromethyl arene[J]. Org. Lett., 2023, 25(30): 5602-5607.
文章导航

/