欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

钯催化电化学烯丙位4-吡啶化反应中的配体作用研究

  • 丁伟杰 ,
  • 杨春晖 ,
  • 冯钟涛 ,
  • 陆仕荣 ,
  • 程旭
展开
  • a台州学院材料科学与工程学院,浙江 台州 318000,中国
    b南京大学化学化工学院,江苏 南京 210023,中国
    c新加坡南洋理工化学化工生物技术学院,新加坡 637371,新加坡

收稿日期: 2023-08-14

  录用日期: 2023-12-08

  网络出版日期: 2023-12-24

Comparison of Ligands in Palladium-Catalyzed Electrochemical Allyl 4-Pyridinylation

  • Wei-Jie Ding ,
  • Chun-Hui Yang ,
  • Zhong-Tao Feng ,
  • Shi-Rong Lu ,
  • Xu Cheng
Expand
  • aDepartment of Material Science and Technology, Taizhou University, Taizhou 318000, Zhejiang, China
    bSchool of Chemistry and Chemical Engineering Nanjing University, Nanjing 210023, Jiangsu, China
    cSchool of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371

Received date: 2023-08-14

  Accepted date: 2023-12-08

  Online published: 2023-12-24

摘要

过渡金属络合物在电化学合成中获得了广泛的应用,其中配体对于络合物在电场中稳定性、催化活性以及选择性的影响还了解有限。4-氰基-吡啶作为一种高效吡啶化试剂,在自由基化学中获得广泛应用。在前期的工作中,我们实现了电化学条件下,手性双膦配体钯络合物催化4-氰基-吡啶与烯丙基醋酸酯反应,构建了多种手性烯丙基吡啶化合物。我们发现双膦配体对反应有着关键的作用,决定着反应的活性、区域选择性和对映选择性。在本工作中,我们系统性地研究了多种双膦配体钯金属络合物,在烯丙基醋酸酯与氰基吡啶的电化学还原偶联过程中的性质。通过控制实验,电化学分析以及理论计算等方法,我们揭示了双膦配体对于络合物稳定性及反应区域选择性的影响。进而,我们发现在电场条件下存在一个非稳定价态的过渡金属络合物。这个非稳定价态的过渡金属络合物中,双膦配体可以将电荷和自旋密度分散于整个络合物之中,而不是局限于金属离子之上。这样,络合物既可以作为电子转移催化剂,也可以作为过渡金属催化剂,同时控制整个电子转移过程以及成键过程。我们认为这种配体与金属在电场条件下的非稳定价态络合物,展现了电化学条件下过渡金属催化的独特能力,这有助于发展未来的新型的电化学催化体系。同时,我们还发现锌电极至关重要,其不仅可以活化4-氰基吡啶,还可以淬灭氰根离子,展现出Lewis酸性金属离子的特殊用途。

本文引用格式

丁伟杰 , 杨春晖 , 冯钟涛 , 陆仕荣 , 程旭 . 钯催化电化学烯丙位4-吡啶化反应中的配体作用研究[J]. 电化学, 2024 , 30(5) : 2313003 . DOI: 10.61558/2993-074X.3438

Abstract

4-CN-pyridine is a widely applied 4-pyridinylation reagent for diverse transformations. Conventionally, the reaction proceeds via an open-shell radical cross-coupling pathway. Following our previous study, in this work, we report the Pd-catalyzed allyl 4-pyrinylation reaction under electrochemical conditions. The reaction proceeds via radical-polar crossover pathway in which the role of phosphine ligand in reactivity and selectivity was extensively investigated.

参考文献

[1] Ataf A A, Adnan S, Zarif G, Nasir R, Amin B, Bhajan L, Ezzat K. A review on the medicinal importance of Pyridine Derivatives[J]. J. Drug Des. Med. Chem., 2015, 1(1): 1-11.
[2] Nakao Y, Yada A, Satoh J, Ebata S, Oda S, Hiyama T. Arylcyanation of norbornene and norbornadiene catalyzed by nickel[J]. Chem. Lett., 2006, 35(7): 790-791.
[3] McNally A, Prier C K, MacMillan D W C. Discovery of an α-amino C-H arylation reaction using the strategy of accelerated serendipity[J]. Science, 2011, 334(6059): 1114-1117.
[4] Pirnot M T, Rankic D A, Martin D B C, MacMillan D W C. Photoredox activation for the direct β-arylation of ketones and aldehydes[J]. Science, 2013, 339(6127): 1593-1596.
[5] Qvortrup K, Rankic D A, MacMillan D W C. A general strategy for organocatalytic activation of C-H bonds via photoredox catalysis: Direct arylation of benzylic ethers[J]. J. Am. Chem. Soc., 2014, 136(2): 626-629.
[6] Cuthbertson J D, MacMillan D W C. The direct arylation of allylic sp3 C-H bonds via organic and photoredox catalysis[J]. Nature, 2015, 519(7541): 74-77.
[7] Lipp B, Lipp A, Detert H, Opatz T. Light-induced alkylation of (hetero)aromatic nitriles in a transition-metal-free C-C-bond metathesis[J]. Org. Lett., 2017, 19(8): 2054-2057.
[8] Lima F, Kabeshov M A, Tran D N, Battilocchio C, Sedelmeier J, Sedelmeier G, Schenkel B, Ley S V. Visible light activation of boronic esters enables efficient photoredox C(sp2)-C(sp3) cross-couplings in flow[J]. Angew. Chem. Int. Ed., 2016, 55(45): 14085-14089.
[9] Lipp B, Nauth A M, Opatz T. Transition-metal-free decarboxylative photoredox coupling of carboxylic acids and alcohols with aromatic nitriles[J]. Org. Chem., 2016, 81(15): 6875-6882.
[10] Gao L Z, Wang G Q, Cao J, Chen H, Gu Y M, Liu X T, Cheng X, Ma J, Li S H. Lewis acid-catalyzed selective reductive decarboxylative pyridylation of N-hydroxyphthalimide esters: Synthesis of congested pyridine-substituted quaternary carbons[J]. ACS Catal., 2019, 9(11): 10142-10151.
[11] Shi J L, Yuan T, Zheng M F, Wang X C. Metal-free heterogeneous semiconductor for visible-light photocatalytic decarboxylation of carboxylic acids[J]. ACS Catal., 2021, 11(5): 3040-3047.
[12] Wang G Q, Cao J, Gao L Z, Chen W X, Huang W H, Cheng X, Li S H. Metal-free synthesis of C-4 substituted pyridine derivatives using pyridine-boryl radicals via a radical addition/coupling mechanism: A combined computational and experimental study[J]. J. Am. Chem. Soc., 2017, 139(10): 3904-3910.
[13] Zhang X, Yang C, Gao H, Wang L, Guo L, Xia W J. Reductive arylation of aliphatic and aromatic aldehydes with cyanoarenes by electrolysis for the synthesis of alcohols[J]. Org. Lett., 2021, 23(9): 3472-3476.
[14] Ding W J, Sheng J, Li J, Cheng X. Electroreductive 4-pyridylation of unsaturated compounds using gaseous ammonia as a hydrogen source[J]. Org. Chem. Front, 2022, 9(10): 2634-2639.
[15] Cao J, Wang G Q, Gao L Z, Chen H, Liu X T, Cheng X, Li S H. Perfluoroalkylative pyridylation of alkenes via 4-cyanopyridine-boryl radicals[J]. Chem. Sci., 2019, 10(9): 2767-2772.
[16] Chen J, Zhu S Q, Qin J, Chu L L. Intermolecular, redox-neutral azidoarylation of alkenes via photoredox catalysis[J]. Chem. Commun., 2019, 55(16): 2336-2339.
[17] Lipp B, Kammer L M, Kücükdisli M, Luque A, Kühlborn J, Pusch S, Matuleviciute G, Schollmeyer D, Sackus A, Opatz T. Visible light-induced sulfonylation/arylation of styrenes in a double radical three-component photoredox reaction[J]. Chem. Eur. J., 2019, 25(38): 8965-8969.
[18] Zhu S Q, Qin J, Wang F, Li H, Chu L L. Photoredox-catalyzed branch-selective pyridylation of alkenes for the expedient synthesis of Triprolidine[J]. Nat. Commun., 2019, 10: 749.
[19] Betori R C, Scheidt K A. Reductive arylation of arylidene malonates using photoredox catalysis (Retracted Article)[J]. ACS Catal., 2019, 9(11): 10350-10357.
[20] Qi J, Zhang F L, Jin J K, Zhao Q, Li B, Liu L X, Wang Y F. New radical borylation pathways for organoboron synthesis enabled by photoredox catalysis[J]. Angew. Chem. Int. Ed., 2020, 59(31): 12876-12884.
[21] Zhang S, Li L J, Li X R, Zhang J Q, Xu K, Li G G, Findlater M. Electroreductive 4-pyridylation of electron-deficient alkenes with assistance of ni(acac)2[J]. Org. Lett., 2020, 22(9): 3570-3575.
[22] Li Y J, Han C J, Wang Y Y, Huang X, Zhao X W, Qiao B K, Jiang Z Y. Catalytic asymmetric reductive azaarylation of olefins via enantioselective radical coupling[J]. J. Am. Chem. Soc., 2022, 144(17): 7805-7814.
[23] Miao M, Liao L L, Cao G M, Zhou W J, Yu D G. Visible-light-mediated external-reductant-free reductive cross coupling of benzylammonium salts with (hetero)aryl nitriles[J]. Sci. Chin. Chem., 2019, 62(11): 1519-1524.
[24] Lehnherr D, Lam Y H, Nicastri M C, Liu J C, Newman J A, Regalado E L, DiRocco D A, Rovis T. Electrochemical synthesis of hindered primary and secondary amines via proton-coupled electron transfer[J]. J. Am. Chem. Soc., 2020, 142(1): 468-478.
[25] Wen J W, Yang X T, Yan K L, Qin H Y, Ma J, Sun X J, Yang J J, Wang H. Electroreductive C3 pyridylation of quinoxalin-2(1H)-ones: An effective way to access bidentate nitrogen ligands[J]. Org. Lett., 2021, 23(3): 1081-1085.
[26] Jahn U. Radicals in transition metal catalyzed reactions? Transition metal catalyzed radical reactions? A fruitful interplay anyway[J]. Top. Curr. Chem., 2011, 320, 323-451.
[27] Twilton J, Le C, Zhang P, Shaw M H, Evans R W, MacMillan D W C. The merger of transition metal and photocatalysis[J]. Nat. Rev. Chem., 2017, 1(7): 0052.
[28] Lu J Q, Wang Y K, McCallum T, Fu N K. Harnessing radical chemistry via electrochemical transition metal catalysis[J]. iScience, 2020, 23(12): 101796.
[29] Cheng X, Lei A W, Mei T S, Xu H C, Xu K, Zeng C C. Recent applications of homogeneous catalysis in electrochemical organic synthesis[J]. CCS Chem., 2022, 4: 1120-1152.
[30] Ma C, Fang P, Liu Z R, Xu S S, Xu K, Cheng X, Lei A W, Xu H C, Zeng C C, Mei T S. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts[J]. Sci. Bull., 2021, 66(23): 2412-2429.
[31] Zhang W, Wang F, McCann S D, Wang D H, Chen P H, Stahl S S, Liu G S. Enantioselective cyanation of benzylic C-H bonds via copper-catalyzed radical relay[J]. Science, 2016, 353(6303): 1014-1018.
[32] Ge L, Zhou H, Chiou M F, Jiang H M, Jian W J, Ye C Q, Li X Y, Zhu X T, Xiong H G, Li Y J, Song L J, Zhang X H, Bao H L. Iron-catalysed asymmetric carboazidation of styrenes[J]. Nat. Catal., 2021, 4(1): 28-35.
[33] Zhang C, Li Z L, Gu Q S, Liu X Y. Catalytic enantioselective C(sp3)-H functionalization involving radical intermediates[J]. Nat. Commun., 2021, 12(1): 475.
[34] Zhou Q, Chin M, Fu Y, Liu P, Yang Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450[J]. Science, 2021, 374(6575): 1612-1616.
[35] Ding W J, Li M F, Fan J K, Cheng X. Palladium-catalyzed asymmetric allylic 4-pyridinylation via electroreductive substitution reaction[J]. Nat. Commun., 2022, 13(1): 5642-5652.
[36] Pitzer L, Schwarz J L, Glorius F. Reductive radical-polar crossover: Traditional electrophiles in modern radical reactions[J]. Chem. Sci., 2019, 10(36): 8285-8291.
[37] Wiles R J, Molander G A. Photoredox-mediated net-neutral radical/polar crossover reactions[J]. Isr. J. Chem., 2020, 60(3-4): 281-293.
[38] Sharma S, Singh J, Sharma A. Visible light assisted radical-polar/polar-radical crossover reactions in organic synthesis[J]. Adv. Synth. Catal., 2021, 363(13): 3146-3169.
[39] Jiao K J, Li Z M, Xu X T, Zhang L P, Li Y Q, Zhang K, Mei T S. Palladium-catalyzed reductive electrocarboxylation of allyl esters with carbon dioxide[J]. Org. Chem. Front., 2018, 5(14): 2244-2248.
[40] Zhang H H, Zhao J J, Yu S Y. Enantioselective allylic alkylation with 4-alkyl-1,4-dihydropyridines enabled by photoredox/palladium cocatalysis[J]. J. Am. Chem. Soc., 2018, 140(49): 16914-16919.
[41] Zhang H H, Zhao J J, Yu S Y. Enantioselective α-allylation of anilines enabled by a combined palladium and photoredox catalytic system[J]. ACS Catal., 2020, 10(8): 4710-4716.
[42] Zhang H H, Tang M H, Zhao J J, Song C H, Yu S Y. Enantioselective reductive homocoupling of allylic acetates enabled by dual photoredox/palladium catalysis: Access to C2-symmetrical 1,5-dienes[J]. J. Am. Chem. Soc., 2021, 143(32): 12836-12846.
文章导航

/