欢迎访问《电化学(中英文)》期刊官方网站,今天是
快讯

电催化活性亚甲基化合物的环丙烷化反应

  • 揭亮华 ,
  • 徐海超
展开
  • 固体表面物理化学国家重点实验室,福建省化学生物学重点实验室,厦门大学化学与化工学院,福建 厦门 361005

收稿日期: 2023-03-22

  修回日期: 2023-05-11

  录用日期: 2023-06-29

  网络出版日期: 2023-07-11

Electrocatalytic Cyclopropanation of Active Methylene Compounds

  • Liang-Hua Jie ,
  • Hai-Chao Xu
Expand
  • State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2023-03-22

  Revised date: 2023-05-11

  Accepted date: 2023-06-29

  Online published: 2023-07-11

摘要

由于三元环结构在中间体、天然产品和药物的合成中发挥着重要作用,这使得开发新的策略以获得环丙烷已变得越来越重要。在此,我们提出了一种通过活性亚甲基化合物和芳基烯烃的分子间脱氢环化合成环丙烷的电催化方法。该电化学过程不需要化学氧化剂,允许从廉价和简单易得的原料中快速获得各种官能团化的环丙烷。

本文引用格式

揭亮华 , 徐海超 . 电催化活性亚甲基化合物的环丙烷化反应[J]. 电化学, 2024 , 30(4) : 2313001 . DOI: 10.13208/j.electrochem.2313001

Abstract

The development of novel strategies to access cyclopropanes has become increasingly important due to the vital role of these three-membered ring structures in synthetic intermediates, natural products, and pharmaceuticals. Herein, we present an electrocatalytic method for the synthesis of cyclopropanes through intermolecular dehydrogenative annulation of active methylene compounds and arylalkenes. This electrochemical process requires no chemical oxidants, allowing for a speedy access to various functionalized cyclopropanes from inexpensive and readily available materials.

参考文献

[1] Pirenne V, Muriel B, Waser J V. Catalytic enantioselective ring-opening reactions of cyclopropanes[J]. Chem. Rev., 2021, 121(1): 227-263.
[2] Liu J X, Liu R X, Wei Y, Shi M. Recent developments in cyclopropane cycloaddition reactions[J]. Trends Chem., 2019, 1(8): 779-793.
[3] Ebner C, Carreira E M. Cyclopropanation strategies in recent total syntheses[J]. Chem. Rev., 2017, 117(18): 11651-11679.
[4] Talele T T. The "cyclopropyl fragment" is a versatile player that frequently appears in preclinical/clinical drug molecules[J]. J. Med. Chem., 2016, 59(19): 8712-8756.
[5] Chen D Y K, Pouwer R H, Richard J A. Recent advances in the total synthesis of cyclopropane-containing natural products[J]. Chem. Soc. Rev., 2012, 41(13): 4631-4642.
[6] Zheng Z B, Cheng W F, Wang L J, Zhu J, Sun X L, Tang Y. Asymmetric catalytic [3+2] annulation ofdonor-acceptorcyclopropane with cyclic ketones: Facile access to enantioenriched1-oxaspiro[4.5]decanes[J]. Chin. J. Chem., 2020, 38(12): 1629-1634.
[7] Bi X F, Zhang Q C, Gu Z H. Transition-metal-catalyzed carbon-carbon bond activation in asymmetric synthesis[J]. Chin. J. Chem., 2021, 39(5): 1397-1412.
[8] Ford A, Miel H, Ring A, Slattery C N, Maguire A R, McKervey M A. Modern organic synthesis with alpha-diazocarbonyl compounds[J]. Chem. Rev., 2015, 115(18): 9981-10080.
[9] Maas G. Ruthenium-catalysed carbenoid cyclopropanation reactions with diazo compounds[J]. Chem. Soc. Rev., 2004, 33(3): 183-190.
[10] Ouyang Y Z, Zhan M, Zhou J, Jiao J, Hao H U, Yamada Y M A, Li P F. Z-bpy,a new c2-symmetric bipyridine ligand and its application in enantioselective copper (I)-catalyzed cyclopropanation of olefins[J]. Chin. J. Chem., 2019, 37(8): 807-810.
[11] Green S P, Wheelhouse K M, Payne A D, Hallett J P, Miller P W, Bull J A. Thermal stability and explosive hazard assessment of diazo compounds and diazo transfer reagents[J]. Org. Process Res. Dev., 2020, 24(1): 67-84.
[12] Schilter D. Doing without diazos[J]. Nat. Catal., 2021, 4(5): 347-347.
[13] Jia M Q, Ma S M. New approaches to the synthesis of metal carbenes[J]. Angew. Chem. Int. Ed., 2016, 55(32): 9134-9166.
[14] Ye L W, Zhu X Q, Sahani R L, Xu Y, Qian P C, Liu R S. Nitrene transfer and carbene transfer in gold catalysis[J]. Chem. Rev., 2021, 121(14): 9039-9112.
[15] Zhang L. A non-diazo approach to α-oxo gold carbenes via gold-catalyzed alkyne oxidation[J]. Acc. Chem. Res., 2014, 47(3): 877-888.
[16] Zhu D, Chen L F, Fan H L, Yao Q L, Zhu S F. Recent progress on donor and donor-donor carbenes[J]. Chem. Soc. Rev., 2020, 49(3): 908-950.
[17] Moreau B, Charette A B. Expedient synthesis of cyclopropane alpha-amino acids by the catalytic asymmetric cyclopropanation of alkenes using iodonium ylides derived from methyl nitroacetate[J]. J. Am. Chem. Soc., 2005, 127(51): 18014-18015.
[18] Cao L Y, Luo J N, Yao J S, Wang D K, Dong Y Q, Zheng C, Zhuo C X. Molybdenum-catalyzed deoxygenative cyclopropanation of 1,2-dicarbonyl or monocarbonyl compounds[J]. Angew. Chem. Int. Ed., 2021, 60(28): 15254-15259.
[19] Fischer D M, Lindner H, Amberg W M, Carreira E M. Intermolecular organophotocatalytic cyclopropanation of unactivated olefins[J]. J. Am. Chem. Soc., 2023, 145(2): 774-780.
[20] Yuan Y, Yang J, Lei A W. Recent advances in electrochemical oxidative cross-coupling with hydrogen evolution involving radicals[J]. Chem. Soc. Rev., 2021, 50(18): 10058-10086.
[21] Cheng X, Lei A, Mei T S, Xu H C, Xu K, Zeng C. Recent applications of homogeneous catalysis in electrochemical organic synthesis[J]. CCS Chem., 2022, 4: 1120-1152.
[22] Jie L H, Guo B, Song J S, Xu H C. Organoelectrocatalysis enables direct cyclopropanation of methylene compounds[J]. J. Am. Chem. Soc., 2022, 144(5): 2343-2350.
[23] Xiong P, Xu H C. Chemistry with electrochemically generated N-centered radicals[J]. Acc. Chem. Res., 2019, 52(12): 3339-3350.
[24] Zhu L, Xiong P, Mao Z Y, Wang Y H, Yan X M, Lu X, Xu H C. Electrocatalytic generation of amidyl radicals for olefin hydroamidation: Use of solvent effects to enable anilide oxidation[J]. Angew. Chem. Int. Ed., 2016, 55(6): 2226-2229.
[25] Hou Z W, Yan H, Song J S, Xu H C. Electrochemical synthesis of (Aza)indolines via dehydrogenative [3+2] annulation: application to total synthesis of (±)-hinckdentine A?[J]. Chin. J. Chem., 2018, 36(10): 909-915.
[26] Yan H, Hou Z W, Xu H C. Photoelectrochemical C-H alkylation of heteroarenes with organotrifluoroborates[J]. Angew. Chem. Int. Ed., 2019, 58(14): 4592-4595.
[27] Huang C, Qian X Y, Xu H C. Continuous-flow electrosynthesis of benzofused S-heterocycles by dehydrogenative C-S cross-coupling[J]. Angew. Chem. Int. Ed., 2019, 58(20): 6650-6653.
[28] Cai C Y, Lai X L, Wang Y, Hu H H, Song J, Yang Y, Wang C, Xu H C. Photoelectrochemical asymmetric catalysis enables site- and enantioselective cyanation of benzylic C-H bonds[J]. Nat. Catal., 2022, 5(10): 943-951.
[29] Yan H, Song J, Zhu S, Xu H C. Synthesis of acridinium photocatalysts via site-selective C-H alkylation[J]. CCS Chem., 2021, 3: 317-325.
[30] Liu C K, Lin Y, Cai C, Yuan C C, Fang Z, Guo K. Continuous-flow electro-oxidative coupling of sulfides with activated methylene compounds leading to sulfur ylides[J]. Green Chem., 2021, 23(8): 2956-2961.
[31] Chen M, Wu Z J, Song J, Xu H C. Electrocatalytic allylic C-H alkylation enabled by a dual-function cobalt catalyst[J]. Angew. Chem. Int. Ed., 2022, 61(14): e202115954.
[32] Cai C Y, Wu Z J, Liu J Y, Chen M, Song J, Xu H C. Tailored cobalt-salen complexes enable electrocatalytic intramolecular allylic C-H functionalizations[J]. Nat. Commun., 2021, 12(1): 3745.
[33] Qin T, Lv G, Mia H, Guan M, Xu C, Zhang G, Xiong T, Zhang Q. Cobalt-catalyzed asymmetric alkylation of (hetero)arenes with styrenes[J]. Angew. Chem. Int. Ed., 2022, 61(26): e202201967.
[34] Yin Y N, Ding R Q, Ouyang D C, Zhang Q, Zhu R. Highly chemoselective synthesis of hindered amides via cobalt-catalyzed intermolecular oxidative hydroamidation[J]. Nat. Commun., 2021, 12(1): 2552.
[35] Ebisawa K, Izumi K, Ooka Y, Kato H, Kanazawa S, Komatsu S, Nishi E, Shigehisa H. Catalyst- and silane-controlled enantioselective hydrofunctionalization of alkenes by cobalt-catalyzed hydrogen atom transfer and radical-polar crossover[J]. J. Am. Chem. Soc., 2020, 142(31): 13481-13490.
文章导航

/