基于线性范围可调的适配体功能化微电极的鼠脑中钾离子的活体分析
收稿日期: 2022-11-14
修回日期: 2023-05-12
录用日期: 2023-05-15
网络出版日期: 2023-05-13
An Aptamer-Based Microelectrode with Tunable Linear Range for Monitoring of K+ in the Living Mouse Brain
Received date: 2022-11-14
Revised date: 2023-05-12
Accepted date: 2023-05-15
Online published: 2023-05-13
钾离子(K+)广泛参与多种生理病理过程,其异常变化与脑缺血等脑部疾病的发生密切相关。在体内获取K+的变化对了解K+在大脑功能中发挥的作用具有重要意义。我们开发了一种基于单链DNA诱导结构变化的微电极,用于高选择性地检测大脑中的K+。电化学探针主要由三部分组成,其中适配体片段用于特异性识别K+,末端炔基基团用于高稳定组装探针于金表面,头部修饰的二茂铁基团作为电化学活性基团提供响应信号。结果表明通过合理地调控适配体的烷基链的长度,可以有效调节微电极的线性响应区间。其中优化后的电极LAC电极对K+检测体现出了高的选择性,在10 μmol·L-1-10 mmol·L-1的线性范围展示了良好的线性关系。最终该新型微电极被成功应用于活体小鼠大脑中K+的实时检测。
刘原东 , 李佳润 , 张立敏 , 田阳 . 基于线性范围可调的适配体功能化微电极的鼠脑中钾离子的活体分析[J]. 电化学, 2023 , 29(6) : 2218004 . DOI: 10.13208/j.electrochem.2218004
Potassium ion (K+) is widely involved in several physiopathological processes, and its abnormal changes are closely related to the occurrence of brain diseases of cerebral ischemia. In vivo acquirement of K+ variation is significant to understand the roles of K+ playing in brain functions. A microelectrode based on single-stranded DNA aptamers was developed for highly selective detection of K+ in brain, in which the aptamer probes were designed to contain an aptamer part for specific recognition of K+, an alkynyl group used for stable confinement of aptamer probe on the gold surface, and an electrochemical redox active ferrocene group to generate current response signal. The response range of the microelectrodes could be rationally tuned by varying the chain length of the aptamer probe. The optimized electrode, LAC, displayed high selectivity for in vivo detection of K+, and suitable linear range from 10 μmol·L-1-10 mmol·L-1, which could fulfill the requirement of K+ detection in brain. Eventually, the microelectrodes were successfully applied for the detection of K+ in the living mouse brains followed by hypoxic.
Key words: Aptamer; Functional microelectrode; Potassium ion; Brain
[1] | Fahanik-Babaei J, Rezaee B, Nazari M, Torabi N, Saghiri R, Sauve R, Eliassi A. A new brain mitochondrial sodium-sensitive potassium channel: effect of sodium ions on respiratory chain activity[J]. J. Cell Sci., 2020, 133(10): jcs242446. |
[2] | Kamel H, Healey J. Cardioembolic stroke[J]. Circ. Res., 2017, 120(3): 514-526. |
[3] | Liu, Y D, Liu Z C, Zhao, F, Tian Y. Long-term tracking and dynamically quantifying of reversible changes of extracellular Ca2+ in multiple brain regions of freely moving animals[J]. Angew. Chem. Int. Edit., 2021, 60(26): 14429-14437. |
[4] | Weaver C. M. Potassium and health[J]. Adv. Nutr., 2013, 4(3): 368S-77S. |
[5] | Qu Z, Steinvall E, Ghorbani R, Schmidt F M. Tunable diode laser atomic absorption spectroscopy for detection of potassium under optically thick conditions[J]. Anal. Chem., 2016, 88(7), 3754-3760. |
[6] | Beiraghi A, Shokri M. A novel task specific magnetic polymeric ionic liquid for selective preconcentration of potassium in oil samples using centrifuge-less dispersive liquid-liquid microextraction technique and its determination by flame atomic emission spectroscopy[J]. Talanta, 2018, 178: 616-621. |
[7] | Jewell M P, Greer M D. Dailey A L, Cash K J. Triplet-triplet annihilation upconversion based nanosensors for fluorescence detection of potassium[J]. ACS sens., 2020, 5(2): 474-480. |
[8] | Liu Y D, Liu Z C, Tian Y. Real-time tracking of electrical signals and an accurate quantification of chemical signals with long-term stability in the live brain[J]. Acc. Chem. Res., 2022, 55(19): 2821-2832. |
[9] | Da Y F, Luo S H, Tian Y. Real-time monitoring of neurotransmitters in the brain of living animals[J]. ACS Appl. Mater. Interfaces, 2022, 15(1): 138-157. |
[10] | Liu Z C, Tian Y. Recent advances in development of devices and probes for sensing and imaging in the brain[J]. Sci. China-Chem., 2021, 64(6): 915-931. |
[11] | Huang S Q, Zhang L M, Dai L Y, Wang Y Y, Tian Y. Nonenzymatic electrochemical sensor with ratiometric signal output for selective determination of superoxide anion in rat brain[J]. Anal. Chem., 2021, 93(13): 5570-5576. |
[12] | Qian Y J, Zhang L M, Tian Y. Highly stable electrochemical probe with bidentate thiols for ratiometric monitoring of endogenous polysulfide in living mouse brains[J]. Anal. Chem., 2022, 94(2): 1447-1455. |
[13] | Dong H, Zhou Q, Zhang L M, Tian Y. Rational design of specific recognition molecules for simultaneously monitoring of endogenous polysulfide and hydrogen sulfide in the mouse brain[J]. Angew. Chem. Int. Edit., 2019, 58(39): 13948-13953. |
[14] | Zhao F, Liu Y D, Dong H, Feng S Q, Shi G Y, Lin L N, Tian Y. An electrochemophysiological microarray for real-time monitoring and quantification of multiple ions in the brain of a freely moving rat[J]. Angew. Chem. Int. Edit., 2020, 59(26): 10426-10430. |
[15] | Dunn M R, McCloskey C M, Buckley P, Rhea K, Chaput J C. Generating biologically stable TNA aptamers that function with high affinity and thermal stability[J]. J. Am. Chem. Soc., 2020, 142(17): 7721-7724. |
[16] | Stephens M. The emerging potential of Aptamers as therapeutic agents in infection and inflammation[J]. Pharmacol. Ther., 2022, 238: 108173. |
[17] | Gong Z W, Liu Z C, Zhang Z H, Mei Y X, Tian Y. A highly stable two-photon ratiometric fluorescence probe for real-time biosensing and imaging of nitric oxide in brain tissues and larval zebrafish[J], CCS Chemistry, 2022, 4: 1-23. |
[18] | Liu Z C, Zhu Y, Zhang L M, Jiang W P, Liu Y W, Tang Q W, Cai X Q, Li J, Wang L H, Tao C L, Yin X Z, Li X W, Hou S G, Jiang D W, Liu K, Zhou X, Zhang H J, Liu M L, Fan C H, Tian Y. Structural and functional imaging of brains[J]. Sci China-Chem., 2022, 66(2): 324-366. |
[19] | Chen Z B, Guo J X, Zhang S G, Chen L. A one-step electrochemical sensor for rapid detection of potassium ion based on structure-switching aptamer[J]. Sens. Actuator B-Chem., 2013, 188: 1155-1157. |
[20] | Zhang L M, Tian Y. Designing recognition molecules and tailoring functional surfaces for in vivo monitoring of small molecules in the brain[J]. Accounts Chem. Res., 2018, 51(3): 688-696. |
[21] | Liu W, Dong H, Zhang L M, Tian Y. Development of an efficient biosensor for the in?vivo monitoring of Cu+ and pH in the brain: Rational design and synthesis of recognition molecules[J]. Angew. Chem. Int. Edit., 2017, 56(51): 16328-16332. |
[22] | Zhang C P, Liu Z C, Zhang L M, Zhu A W, Liao F M, Wan J J, Zhou J, Tian Y. A robust Au-C≡C functionalized surface: Toward real-time mapping and accurate quantification of Fe2+ in the brains of live ad Mouse models[J]. Angew. Chem. Int. Edit., 2020, 59(46): 20499-20507. |
[23] | Gao X, Jiang L. Hu B, et al. Au-Se bond based nanoprobe for imaging MMP-2 in Tumor cells under a high-thiol environment[J]. Anal. Chem., 2018, 90(7): 4719-4724. |
[24] | Liu H, Radford M N, Yang C T, Chen W, Xian M. Inorganic hydrogen polysulfides: Chemistry, chemical biology, and detection[J]. Br. J. Pharmacol., 2019, 176(4): 616-627. |
/
〈 |
|
〉 |