基于电化学阻抗谱的致病菌检测传感器的研究进展
收稿日期: 2022-10-31
修回日期: 2023-01-05
录用日期: 2023-05-17
网络出版日期: 2023-05-24
Recent Advances in Electrochemical Impedance Spectroscopy-Based Pathogenic Bacteria Sensing
Received date: 2022-10-31
Revised date: 2023-01-05
Accepted date: 2023-05-17
Online published: 2023-05-24
几千年来,致病菌对人类健康构成了巨大威胁。实现致病菌的实时监测可有效阻止致病菌的传播,从而降低对人类健康的威胁。迄今为止,已有电化学、光学、压电和量热等多种技术用于细菌的检测。其中,基于电化学阻抗技术的传感器由于其成本低、读取时间短、重现性好、设备便携等优点,在实时细菌检测中展现出了巨大的应用潜力。本文主要综述了近三年来电化学阻抗技术在细菌传感中的典型应用。众所周知,电极材料在基于电化学阻抗的传感器的构建中发挥着极其重要的作用,因为细菌生物识别元件的固定化,以及所制备的传感器的灵敏度、经济性和便携性都主要取决于电极材料。因此,为了向新入行的研究人员提供基于不同电极材料制备电化学阻抗传感器清晰的制备过程,我们尝试根据不同的电极平台对基于电化学阻抗技术的传感器进行分类。此外,还讨论了目前的难点、未来的应用方向和前景。我们希望通过本文的综述,能够为刚进入该领域的研究人员开展基于电化学阻抗技术,制备快速、灵敏、准确地检测多种致病菌的传感器研究提供指导。
陈涛 , 许元红 , 李景虹 . 基于电化学阻抗谱的致病菌检测传感器的研究进展[J]. 电化学, 2023 , 29(6) : 2218002 . DOI: 10.13208/j.electrochem.2218002
Pathogenic bacteria have been throwing great threat on human health for thousands of years. Their real-time monitoring is in urgent need as it could effectively halt the spread of pathogenic bacteria and thus reducing the risk to human health. Up till now, diverse technologies such as electrochemistry, optics, piezoelectricity and calorimetry have been developed for bacteria sensing. Therein, electrochemical impedance spectroscopy (EIS)-based sensors show great potential in point-of-care bacterial analysis because of their low-cost, short read-out time, good reproducibility, and portable equipment construction. In this review, we will primarily summarize the typical applications of electrochemical impedance technology in bacteria sensing based on different electrodes in the last three years. As we know, the electrode materials play an extremely important role in the construction of EIS-based sensors because not only the immobilization of bio-recognition elements for bacteria, but also the sensitivity, economical efficiency and portability of the as-prepared sensors are mainly determined by the electrode materials. Therefore, in order to provide new researchers a clear preparation process for EIS-based sensors fabricated with different electrodes, we try to classify the EIS-based sensors according to the different electrode platforms. Moreover, present difficulties, future directions and perspectives for their applications are also discussed. It can provide guidance in future study of novel EIS-based sensors for rapid, sensitive and accurate sensing of diverse pathogenic bacteria.
[1] | Li D X, Chen T, Zhang Y F, Xu Y H, Niu H T. Synergistical starvation and chemo-dynamic therapy for combating multidrug-resistant bacteria and accelerating diabetic wound healing[J]. Adv. Healthc. Mater., 2021, 10(18): 2100716. |
[2] | Li A H, Zhang M, Ma W S, Li D X, Xu Y H. Sugar-disguised bullets for combating multidrug-resistant bacteria infections based on an oxygen vacancy-engineered glucose-functionalized MoO3-x photo-coordinated bienzyme[J]. Chem. Eng. J., 2022, 431: 133943. |
[3] | Guo L, Hu Y C, Lei Y, Wu H, Yang G Z, Wang Y, Wei G. Vitrification of petrochemical sludge for rapid, facile, and sustainable fixation of heavy metals[J]. J. Environ. Chem. Eng., 2022, 10(6): 108812. |
[4] | Liu Z Z, Liu Z X, Zhao Z, Li D X, Zhang P F, Zhang Y F, Liu X Y, Ding X T, Xu Y H. Photothermal regulated nanozyme of CuFeS2 nanoparticles for efficiently promoting wound healing infected by multidrug resistant bacteria[J]. Nanomaterials, 2022, 12(14): 2469. |
[5] | Zhao Z, Zhang H, Chen H D, Xu Y H, Ma L N, Wang Z X. An efficient photothermal-chemotherapy platform based on a polyacrylamide/phytic acid/polydopamine hydrogel[J]. J. Mater. Chem. B, 2022, 10(21): 4012-4019. |
[6] | Zielinski B, Plichta A, Misztal K, Spurek P, Brzychczy-Wloch M, Ochonska D. Deep learning approach to bacterial colony classification[J]. Plos One, 2017, 12(9): e0184554. |
[7] | Song F G, Shen Y Y, Wei Y D, Yang C R, Ge X L, Wang A M, Li C Y, Wan Y, Li J H. Botulinum toxin as an ultrasensitive reporter for bacterial and SARS-CoV-2 nucleic acid diagnostics[J]. Biosens. Bioelectron., 2021, 176: 112953. |
[8] | Castle L M, Schuh D A, Reynolds E E, Furst A L. Electrochemical sensors to detect bacterial foodborne pathogens[J]. ACS Sensors, 2021, 6(5): 1717-1730. |
[9] | Furst A L, Francis M B. Impedance-based detection of bacteria[J]. Chem. Rev., 2019, 119(1): 700-726. |
[10] | Wang M, Zeng J, Wang J Q, Wang X, Wang Y, Gan N. Dual-mode aptasensor for simultaneous detection of multiple food-borne pathogenic bacteria based on colorimetry and microfluidic chip using stir bar sorptive extraction[J]. Microchim. Acta, 2021, 188(8): 244. |
[11] | Song F G, Wei Y D, Wang P, Ge X L, Li C Y, Wang A M, Yang Z Q, Wan Y, Li J H. Combining tag-specific primer extension and magneto-DNA system for Cas14a-based universal bacterial diagnostic platform[J]. Biosens. Bioelectron., 2021, 185: 113262. |
[12] | Huang J M, Zhong Y J, Li W X, Wang W X, Li C Y, Wang A M, Yan H, Wan Y, Li J H. Fluorescent and opt-electric recording bacterial identification device for ultrasensitive and specific detection of microbials[J]. ACS Sensors, 2021, 6(2): 443-449. |
[13] | Song F G, Deng R J, Liu H, Wang A M, Ma C X, Wei Y D, Cui X J, Wan Y, Li J H. Trypsin-amplified aerolysin nanopore amplified sandwich assay for attomolar nucleic acid and single bacteria detection[J]. Anal. Chem., 2019, 91(21): 14043-14048. |
[14] | Wu S J, Duan N, Qiu Y T, Li J H, Wang Z P. Colorimetric aptasensor for the detection of salmonella enterica serovar typhimurium using ZnFe2O4-reduced graphene oxide nanostructures as an effective peroxidase mimetics[J]. Int. J. Food Microbiol., 2017, 261: 42-48. |
[15] | Kumar R, Surendran P K, Thampuran N. Evaluation of culture, ELISA and PCR assays for the detection of salmonella in seafood[J]. Lett. Appl. Microbiol., 2008, 46(2): 221-226. |
[16] | Campuzano S, Pedrero M, Yá?ez-Sede?o P, Pingarrón J M. New challenges in point of care electrochemical detection of clinical biomarkers[J]. Sens. Actuator B-Chem., 2021, 345: 130349. |
[17] | Hui Y, Huang Z, Alahi M E E, Nag A, Feng S, Mukhopadhyay S C. Recent advancements in electrochemical biosensors for monitoring the water quality[J]. Biosensors, 2022, 12(7): 551. |
[18] | Cady P, Hardy D, Martins S, Dufour S W, Kraeger S J. Automated impedance measurements for rapid screening of milk microbial content[J]. J. Food Prot., 1978, 41(4): 277-283. |
[19] | Dheilly A, Linossier I, Darchen A, Hadjiev D, Corbel C, Alonso V. Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry[J]. Appl. Microbiol. Biotechnol., 2008, 79(1): 157-164. |
[20] | Bigdeli I K, Yeganeh M, Shoushtari M T, Zadeh M K. Chapter 23 - electrochemical impedance spectroscopy (EIS) for biosensing[M]. Micro and Nano Technologies, 2021: 533-554. |
[21] | Andrews G, Neveling O, De Beer D J, Chirwa E M N, Brink H G, Joubert T H. Non-destructive impedance monitoring of bacterial metabolic activity towards continuous lead biorecovery[J]. Sensors, 2022, 22(18): 7045. |
[22] | Li X, Huang Q A, Li W H, Bai Y X, Wang J, Liu Y, Zhao Y F, Wang J, Zhang J J. Fundamentals of electrochemical impedance spectroscopy for macrohomogeneous porous electrodes[J]. J. Electrochem., 2021, 27(5): 467-497. |
[23] | Mu?oz J, Montes R, Baeza M. Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing[J]. Trac-Trend Aanl. Chem., 2017, 97: 201-215. |
[24] | Kowalski M, Brodowski M, Dziabowska K, Skwarecka M, Ficek M, Nidzworski D, Bogdanowicz R. Electrochemical detection of plant pathogens using boron-doped carbon nanowalls immunosensor[J]. IEEE Sens. J., 2022, 22(8): 7562-7571. |
[25] | Svalova T S, Medvedeva M V, Saigushkina A A, Kozitsin I V, Malysheva N N, Zhdanovskikh V O, Okhokhonin A V, Kozitsina A N. A label-free impedimetric immunosensor based on covalent immobilization of anti-e. Coli antibody via a copper-catalyzed azide-alkyne cycloaddition reaction[J]. Anal. Bioanal. Chem., 2020, 412(21): 5077-5087. |
[26] | Wang S H, Zhu X L, Meng Q Y, Zheng P M, Zhang J, He Z W, Jiang H Y. Gold interdigitated micro-immunosensor based on mn-mof-74 for the detection of listeria monocytogens[J]. Biosens. Bioelectron., 2021, 183: 113186. |
[27] | Messaoud N B, dos Santos M B, Vieira A, Garrido-Maestu A, Espi?a B, Queirós R B. A novel portable label-free electrochemical immunosensor for ultrasensitive detection of aeromonas salmonicida in aquaculture seawater[J]. Anal. Bioanal. Chem., 2022, 414: 6591-6600. |
[28] | Liu Y J, Jiang D, Wang S Y, Cai G Z, Xue L, Li Y B, Liao M, Lin J H. A microfluidic biosensor for rapid detection of salmonella typhimurium based on magnetic separation, enzymatic catalysis and electrochemical impedance analysis[J]. Chinese. Chem. Lett., 2022, 33(6): 3156-3160. |
[29] | Huang F C, Xue L, Qi W Z, Cai G Z, Liu Y J, Lin J H. An ultrasensitive impedance biosensor for salmonella detection based on rotating high gradient magnetic separation and cascade reaction signal amplification[J]. Biosens. Bioelectron., 2021, 176: 112921. |
[30] | Gao H, Xu T, Zhou J, Rojas O J, He M, Ji X, Dai H. Electrochemical sensing of staphylococcus aureus based on conductive anti-fouling interface[J]. Microchim. Acta, 2022, 189(3): 97. |
[31] | Sohouli E, Ghalkhani M, Zargar T, Joseph Y, Rahimi-Nasrabadi M, Ahmadi F, Plonska-Brzezinska M E, Ehrlich H. A new electrochemical aptasensor based on gold/nitrogen-doped carbon nano-onions for the detection of staphylococcus aureus[J]. Electrochim. Acta, 2022, 403: 139633. |
[32] | Abdelrasoul G N, Anwar A, MacKay S, Tamura M, Shah M A, Khasa D P, Montgomery R R, Ko A I, Chen J. DNA aptamer-based non-faradaic impedance biosensor for detecting e. Coli[J]. Anal. Chim. Acta, 2020, 1107: 135-144. |
[33] | Wang J, Li H H, Li C B, Ding Y F, Wang Y S, Zhu W J, Wang J, Shao Y C, Pan H, Wang X H. EIS biosensor based on a novel myoviridae bacteriophage SEP37 for rapid and specific detection of salmonella in food matrixes[J]. Food Res. Int., 2022, 158: 111479. |
[34] | Patel D, Zhou Y, Ramasamy R P. A bacteriophage-based electrochemical biosensor for detection of methicillin-resistant staphylococcus aureus[J]. J. Electrochem. Soc., 2021, 168(5): 057523. |
[35] | Sadani K, Muthuraj L, Nag P, Fernandes M, Kondabagil K, Mukhopadhyay C, Mukherji S. A point of use sensor assay for detecting purely viral versus viral-bacterial samples[J]. Sens. Actuator B-Chem., 2020, 322: 128562. |
[36] | Sedki M, Chen X, Chen C, Ge X, Mulchandani A. Non-lytic M13 phage-based highly sensitive impedimetric cytosensor for detection of coliforms[J]. Biosens. Bioelectron., 2020, 148: 111794. |
[37] | Reich P, Preu J A, Bahner N, Bahnemann J. Impedimetric aptamer-based biosensors: Principles and techniques[J]. Adv. Biochem. Eng. Biotechnol., 2020, 174: 17-41. |
[38] | Kwon K, Yoon T, Gwak H, Lee K, Hyun K A, Jung H I. Fully automated system for rapid enrichment and precise detection of enterobacteria using magneto-electrochemical impedance measurements[J]. BioChip J., 2021, 15(3): 233-242. |
[39] | Malvano F, Pilloton R, Albanese D. Label-free impedimetric biosensors for the control of food safety - a review[J]. Int. J. Environ. An. Ch., 2019, 100: 1-24. |
[40] | Roushani M, Rahmati Z, Golchin M, Lotfi Z, Nemati M. Electrochemical immunosensor for determination of staphylococcus aureus bacteria by igy immobilized on glassy carbon electrode with electrodeposited gold nanoparticles[J]. Microchim. Acta, 2020, 187(10): 567. |
[41] | Wang L L, Lin X H, Liu T, Zhang Z H, Kong J, Yu H, Yan J, Luan D L, Zhao Y, Bian X J. Reusable and universal impedimetric sensing platform for rapid and sensitive detection of pathogenic bacteria based on bacteria-imprinted polythiophene film[J]. Analyst., 2022, 20(147): 4433-4441. |
[42] | Roushani M, Sarabaegi M, Rostamzad A. Novel electrochemical sensor based on polydopamine molecularly imprinted polymer for sensitive and selective detection of acinetobacter baumannii[J]. J. Iran Chem. Soc., 2020, 17(9): 2407-2413. |
[43] | Cui F Y, Shen X Q, Cao B, Ji H J, Liu J L, Zhuang X W, Zeng C J, Qu B, Li S B, Xu Y, Zhou Q. Bacterial identification and adhesive strength evaluation based on a mannose biosensor with dual-mode detection[J]. Biosens. Bioelectron., 2022, 203: 114044. |
[44] | Siavash Moakhar R, AbdelFatah T, Sanati A, Jalali M, Flynn S E, Mahshid S S, Mahshid S. A nanostructured gold/graphene microfluidic device for direct and plasmonic-assisted impedimetric detection of bacteria[J]. ACS Appl. Mater. Interfaces, 2020, 12(20): 23298-23310. |
[45] | Malvano F, Pilloton R, Albanese D. A novel impedimetric biosensor based on the antimicrobial activity of the peptide nisin for the detection of salmonella spp[J]. Food Chem., 2020, 325: 126868. |
[46] | Lopez-Tellez J, Sanchez-Ortega I, Hornung-Leoni C, Santos E, Miranda J, Rodriguez J. Impedimetric biosensor based on a hechtia argentea lectin for the detection of salmonella spp[J]. Chemosensors, 2020, 8: 115. |
[47] | Mondal D, Binish R, Samanta S, Paul D, Mukherji S. Detection of total bacterial load in water samples using a disposable impedimetric sensor[J]. IEEE Sens. J., 2019, PP(99): 1-1. |
[48] | Song J, Li Y, Yin F, Zhang Z, Ke D, Wang D, Yuan Q, Zhang X E. Enhanced electrochemical impedance spectroscopy analysis of microbial biofilms on an electrochemically in situ generated graphene interface[J]. ACS Sensors, 2020, 5(6): 1795-1803. |
[49] | Chen T, Li M, Liu J. Π-π stacking interaction: A nondestructive and facile means in material engineering for bioapplications[J]. Cryst. Growth. Des., 2018, 18(5): 2765-2783. |
[50] | Zhu L L, Wang L, Zhang X Q, Li T, Wang Y L, Riaz M A, Sui X, Yuan Z W, Chen Y. Interfacial engineering of graphenic carbon electrodes by antimicrobial polyhexamethylene guanidine hydrochloride for ultrasensitive bacterial detection[J]. Carbon, 2020, 159: 185-194. |
[51] | Bharatula L D, Marsili E, Kwan J J. Impedimetric detection of pseudomonas aeruginosa attachment on flexible ITO-coated polyethylene terephthalate substrates[J]. Electrochim. Acta, 2020, 332: 135390. |
[52] | Mahari S, Gandhi S. Electrochemical immunosensor for detection of avian salmonellosis based on electroactive reduced graphene oxide (RGO) modified electrode[J]. Bioelectrochemistry, 2022, 144: 108036. |
[53] | Wang L, Huo X T, Qi W Z, Xia Z Z L, Li Y T, Lin J H. Rapid and sensitive detection of salmonella typhimurium using nickel nanowire bridge for electrochemical impedance amplification[J]. Talanta, 2020, 211: 120715. |
[54] | Swami P, Verma G, Holani A, Kamaraju S, Manchanda V, Sritharan V, Gupta S. Rapid antimicrobial susceptibility profiling using impedance spectroscopy[J]. Biosens. Bioelectron., 2022, 200: 113876. |
[55] | Arreguin-Campos R, Eersels K, Lowdon J W, Rogosic R, Heidt B, Caldara M, Jiménez-Monroy K L, Dili?n H, Cleij T J, van Grinsven B. Biomimetic sensing of escherichia coli at the solid-liquid interface: From surface-imprinted polymer synthesis toward real sample sensing in food safety[J]. Microchem. J., 2021, 169: 106554. |
[56] | Elgiddawy N, Ren S, Yassar A, Louis-Joseph A, Sauriat-Dorizon H, El Rouby W M A, El-Gendy A O, Farghali A A, Korri-Youssoufi H. Dispersible conjugated polymer nanoparticles as biointerface materials for label-free bacteria detection[J]. ACS Appl. Mater. Interfaces, 2020, 12(36): 39979-39990. |
[57] | Cheng L, Yan P X, Fan Y J, Zou H H, Liang H. Mathematical expression and quantitative analysis of impedance spectrum on the interface of glassy carbon electrode[J]. J. Electrochem., 2021, 27(5): 518-528. |
[58] | Han E, Li X, Zhang Y, Zhang M N, Cai J R, Zhang X N. Electrochemical immunosensor based on self-assembled gold nanorods for label-free and sensitive determination of staphylococcus aureus[J]. Anal. Biochem., 2020, 611: 113982. |
[59] | Chen T, Zhang A T, Cheng Y J, Zhang Y H, Fu D L, Liu M S, Li A H, Liu J Q. A molecularly imprinted nanoreactor with spatially confined effect fabricated with nano-caged cascaded enzymatic system for specific detection of monosaccharides[J]. Biosens. Bioelectron., 2021, 188: 113355. |
[60] | Chen T, Xu Y H, Peng Z, Li A H, Liu J Q. Simultaneous enhancement of bioactivity and stability of laccase by Cu2+/PAA/PPEGA matrix for efficient biosensing and recyclable decontamination of pyrocatechol[J]. Anal. Chem., 2017, 89(3): 2065-2072. |
[61] | Chen T, Wei S, Cheng Z F, Liu J Q. Specific detection of monosaccharide by dual-channel sensing platform based on dual catalytic system constructed by bio-enzyme and bionic enzyme using molecular imprinting polymers[J]. Sens. Actuator B-Chem., 2020, 320: 128430. |
[62] | Cheng Y J, Chen T, Fu D L, Liu J Q. A molecularly imprinted nanoreactor based on biomimetic mineralization of bi-enzymes for specific detection of urea and its analogues[J]. Sens. Actuator B-Chem., 2022, 350: 130909. |
[63] | Cheng Y J, Chen T, Fu D L, Liu M S, Cheng Z F, Hua Y F, Liu J Q. The construction of molecularly imprinted electrochemical biosensor for selective glucose sensing based on the synergistic enzyme-enzyme mimic catalytic system[J]. Talanta, 2022, 242: 123279. |
[64] | Peng H Y, Wang J Z, Liu J, Yu H H, Lin J D, Wu D Y, Tian Z Q. Investigation on electrochemical processes of p-aminothiophenol on gold electrode of nanostructures[J]. J. Electrochem., 2022, 28(4): 2106281. |
[65] | Lincy S A, Dharuman V, Kumar P. Ultrasensitive and direct detection of DNA and whole e. Coli cell at cholesterol gold nanoparticle composite film electrode[J]. Ionics, 2022, 28(4): 1973-1984. |
[66] | Karuppiah S, Mishra N C, Tsai W C, Liao W S, Chou C F. Ultrasensitive and low-cost paper-based graphene oxide nanobiosensor for monitoring water-borne bacterial contamination[J]. ACS Sensors, 2021, 6(9): 3214-3223. |
[67] | Ranjbar S, Ashari Astani N, Atabay M, Naseri N, Esfandiar A, Reza Ejtehadi M. Electrochemical and computational studies of bio-mimicked Ti3C2Tx mxene-based sensor with multivalent interface[J]. J. Colloid Interf. Sci, 2022, 623: 1063-1074. |
[68] | Norouz Dizaji A, Ali Z, Ghorbanpoor H, Ozturk Y, Akcakoca I, Avci H, Dogan Guzel F. Electrochemical-based ‘‘antibiotsensor’’ for the whole-cell detection of the vancomycin-susceptible bacteria[J]. Talanta, 2021, 234: 122695. |
[69] | Kanso H, Pankratova G, Bollella P, Leech D, Hernandez D, Gorton L. Sunlight photocurrent generation from thylakoid membranes on gold nanoparticle modified screen-printed electrodes[J]. J. Electroanal. Chem., 2018, 816: 259-264. |
[70] | Ariffin E, Heng L Y, Tan L L, Karim N, Hasbullah S A. A highly sensitive impedimetric DNA biosensor based on hollow silica microspheres for label-free determination of e. Coli[J]. Sensors, 2020, 20(5): 1279. |
[71] | Jin Z Y, Liu C W, Liu Z C, Han J R, Fang Y F, Han Y Q, Niu Y S, Wu Y P, Sun C H, Xu Y H. Rational design of hydroxyl-rich Ti3C2Tx mxene quantum dots for high-performance electrochemical n2 reduction[J]. Adv. Energy Mater., 2020, 10(22): 2000797. |
[72] | Sun J, Kong W H, Jin Z Y, Han Y Q, Ma L Y, Ding X T, Niu Y S, Xu Y H. Recent advances of MXene as promising catalysts for electrochemical nitrogen reduction reaction[J]. Chinese. Chem. Lett., 2020, 31(4): 953-960. |
[73] | Fang Y F, Liu Z C, Han J R, Jin Z Y, Han Y Q, Wang F X, Niu Y S, Wu Y P, Xu Y H. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx MXene[J]. Adv. Energy Mater., 2019, 9(16): 1803406. |
[74] | Kong W H, Gong F, Zhou Q, Yu GS, Ji L, Sun X P, Asiri A M, Wang T, Luo Y L, Xu Y H. An MnO2-Ti3C2Tx MXene nanohybrid: An efficient and durable electrocatalyst toward artificial n2 fixation to NH3 under ambient conditions[J]. J. Mater. Chem. A, 2019, 7(32): 18823-18827. |
[75] | Jin Z Y, Xu G F, Niu Y S, Ding X T, Han Y Q, Kong W H, Fang Y F, Niu H T, Xu Y H. Ti3C2Tx MXene-derived TiO2/C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum[J]. J. Mater. Chem. B, 2020, 8(16): 3513-3518. |
[76] | Xu G F, Niu Y S, Yang X C, Jin Z Y, Wang Y, Xu Y H, Niu H T. Preparation of Ti3C2Tx MXene-derived quantum dots with white/blue-emitting photoluminescence and electrochemiluminescence[J]. Adv. Opt. Mater., 2018, 6(24): 1800951. |
[77] | Fang Y F, Yang X C, Chen T, Xu G F, Liu M L, Liu J Q, Xu Y H. Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine[J]. Sensors and Actuators B-Chemical, 2018, 263: 400-407. |
[78] | Kong W H, Niu Y S, Liu M L, Zhang K X, Xu G F, Wang Y, Wang X W, Xu Y H, Li J H. One-step hydrothermal synthesis of fluorescent mxene-like titanium chock for carbonitride quantum dots[J]. Inorg. Chem. Commun., 2019, 105: 151-157. |
[79] | Xu G F, Wang X X, Gong S D, Wei S, Liu J Q, Xu Y H. Solvent-regulated preparation of well-intercalated Ti3C2Tx mxene nanosheets and application for highly effective electromagnetic wave absorption[J]. Nanotechnology, 2018, 29(35): 355201. |
[80] | Jin Z Y, Fang Y F, Wang X X, Xu G F, Liu M L, Wei S, Zhou C L, Zhang Y L, Xu Y H. Ultra-efficient electromagnetic wave absorption with ethanol-thermally treated two-dimensional Nb2CTx nanosheets[J]. J. Colloid Interf. Sci, 2019, 537: 306-315. |
[81] | Gangwar R, Ray D, Rao K T, Khatun S, Subrahmanyam C, Rengan A K, Vanjari S R K. Plasma functionalized carbon interfaces for biosensor application: Toward the real-time detection of escherichia coli o157:H7[J]. ACS Omega, 2022, 7(24): 21025-21034. |
[82] | Jo H J, Ryu J S, Robby A I, Kim Y S, Chung H J, Park S Y. Rapid and selective electrochemical sensing of bacterial pneumonia in human sputum based on conductive polymer dot electrodes[J]. Sens. Actuator B-Chem., 2022, 368: 132084. |
[83] | Liu Z X, Xianyu Y L, Zheng W S, Zhang J J, Luo Y J, Chen Y P, Dong M L, Wu J, Jiang X Y. T1-mediated nanosensor for immunoassay based on an activatable MnO2nanoassembly[J]. Anal. Chem., 2018, 90(4): 2765-2771. |
[84] | Xue L, Guo R Y, Huang F C, Qi W Z, Liu Y J, Cai G Z, Lin J H. An impedance biosensor based on magnetic nanobead net and MnO2 nanoflowers for rapid and sensitive detection of foodborne bacteria[J]. Biosens. Bioelectron., 2021, 173: 112800. |
[85] | Simi? M, Koji? T, Radovanovi? M, Stojanovi? G M, Al-Salami H. Impedance spectroscopic analysis of the interidigitated flexible sensor for bacteria detection[J]. IEEE Sens. J., 2020, 20(21): 12791-12798. |
[86] | Wang S J, Sun C Y, Hu Q S, Li S, Wang C B, Wang P, Zhou L. A homogeneous magnetic bead-based impedance immunosensor for highly sensitive detection of escherichia coli o157:H7[J]. Biochem. Eng. J., 2020, 156: 107513. |
[87] | Urso M, Tumino S, Bruno E, Bordonaro S, Marletta D, Loria G R, Avni A, Shacham-Diamand Y, Priolo F, Mirabella S. Ultrasensitive electrochemical impedance detection of mycoplasma agalactiae DNA by low-cost and disposable Au-decorated NiO nanowall electrodes[J]. ACS Appl. Mater. Interfaces, 2020, 12(44): 50143-50151. |
[88] | Muhsin S A, Al-Amidie M, Shen Z, Mlaji Z, Liu J, Abdullah A, El-Dweik M, Zhang S, Almasri M. A microfluidic biosensor for rapid simultaneous detection of waterborne pathogens[J]. Biosens. Bioelectron., 2022, 203: 113993. |
[89] | Le Brun G, Hauwaert M, Leprince A, Glinel K, Mahillon J, Raskin J P. Electrical characterization of cellulose-based membranes towards pathogen detection in water[J]. Biosensors, 2021, 11(2): 57. |
[90] | Rabti A, Zayani R, Meftah M, Salhi I, Raouafi N. Impedimetric DNA e-biosensor for multiplexed sensing of escherichia coli and its virulent f17 strains[J]. Microchim. Acta, 2020, 187(11): 635. |
[91] | Lee H, Yi S Y, Kwon J S, Choi J M, Lee D S, Lee S H, Shin Y B. Rapid and highly sensitive pathogen detection by real-time DNA monitoring using a nanogap impedimetric sensor with recombinase polymerase amplification[J]. Biosens. Bioelectron., 2021, 179: 113042. |
[92] | Sannigrahi S, Arumugasamy S K, Mathiyarasu J, Suthindhiran K. Magnetosome-anti-salmonella antibody complex based biosensor for the detection of salmonella typhimurium[J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2020, 114: 111071. |
[93] | Chandran A, Zavasnik J, Cveji E, Sarang S, Stojanovi G M. Performances and biosensing mechanisms of interdigitated capacitive sensors based on the hetero-mixture of SnO2 and In2O3[J]. Sensors, 2020, 20(21): 6323. |
[94] | Shaik S, Saminathan A, Sharma D, Krishnaswamy J A, Mahapatra D R. Monitoring microbial growth on a microfluidic lab-on-chip with electrochemical impedance spectroscopic technique[J]. Biomed. Microdevices, 2021, 23(2): 26. |
[95] | Park J H, Bong J H, Jung J, Sung J S, Pyun J C. Microbial biosensor for salmonella using anti-bacterial antibodies isolated from human serum[J]. Enzyme. Microb. Tech., 2020, 144: 109721. |
[96] | Lee B E, Kang T, Jenkins D, Li Y, Wall M M, Jun S. A single-walled carbon nanotubes-based electrochemical impedance immunosensor for on-site detection of listeria monocytogenes[J]. J. Food Sci., 2022, 87(1): 280-288. |
[97] | Ozer T, Mccord C, Geiss B J, Dandy D, Henry C S. Thermoplastic electrodes for detection of escherichia coli[J]. J. Electrochem. Soc., 2021, 168(4): 047509. |
[98] | Yaghoobi A, Abiri R, Alvandi A, Arkan E, Mohammadi G, Farshadnia T, Jalalvand A R. An efficiently engineered electrochemical biosensor as a novel and user-friendly electronic device for biosensing of streptococcus pneumoniae bacteria[J]. Sensing and Bio-Sensing Research, 2022, 36: 100494. |
[99] | da Silva Junior A G, Frias I A, Lima-Neto R G, Franco O L, Oliveira M D, Andrade C A. Electrochemical detection of gram-negative bacteria through mastoparan-capped magnetic nanoparticle[J]. Enzyme. Microb. Tech., 2022, 160: 110088. |
[100] | Vu Q K, Tran Q H, Vu N P, Anh T L, Le Dang T T, Matteo T, Nguyen T H H. A label-free electrochemical biosensor based on screen-printed electrodes modified with gold nanoparticles for quick detection of bacterial pathogens[J]. Mater. Today Commun., 2021, 26: 101726. |
[101] | Wang O L, Jia X Y, Liu J, Sun M, Wu J K. Rapid and simple preparation of an mxene/polypyrrole-based bacteria imprinted sensor for ultrasensitive salmonella detection[J]. J. Electroanal. Chem., 2022, 918: 116513. |
[102] | Wang R F, Wang R. Modification of polyacrylonitrile-derived carbon nanofibers and bacteriophages on screen-printed electrodes: A portable electrochemical biosensor for rapid detection of escherichia coli[J]. Bioelectrochemistry, 2022, 148: 108229. |
[103] | Skorjanc T, Mavri? A, S?rensen M N, Mali G, Wu C, Valant M. Cationic covalent organic polymer thin film for label-free electrochemical bacterial cell detection[J]. ACS Sensors, 2022, 7(9): 2743-2749. |
[104] | Rishi M, Amreen K, Gohel K, Javed A, Dubey S K, Goel S. Three different rapidly prototyped polymeric substrates with interdigitated electrodes for escherichia coli sensing: A comparative study[J]. IEEE Trans. Nanobiosci., 2022, 22(2): 337-344. |
/
〈 |
|
〉 |