铜互连电镀中有机添加剂的合成与分析
收稿日期: 2022-08-11
修回日期: 2022-10-17
录用日期: 2022-12-07
网络出版日期: 2023-01-07
Synthesis and Evaluation of Organic Additives for Copper Electroplating of Interconnects
Received date: 2022-08-11
Revised date: 2022-10-17
Accepted date: 2022-12-07
Online published: 2023-01-07
铜互连是保障电子设备的功能、性能、能效、可靠性以及制备良品率至关重要的一环。铜互连常通过在酸性镀铜液电镀铜实现,并广泛用于芯片、封装基材和印制电路板中。其中,有机添加剂在调控铜沉积完成沟槽填充、微孔填充以形成精密线路和实现层间互连方面起着决定性作用。添加剂主要由光亮剂、抑制剂和整平剂三组分组成,在恰当的浓度配比下,添加剂对于盲孔超级填充具有协同作用。目前,已报导的文献聚焦于代表性添加剂的超填充机理及其电化学行为,而对于添加剂的化学结构与制备方法鲜有深入研究。本文重点研究了各添加剂组分的制备工艺和快速电化学筛选方法,为电镀铜添加剂的未来发展提供理论指导。
翟悦晖 , 彭逸霄 , 洪延 , 陈苑明 , 周国云 , 何为 , 王朋举 , 陈先明 , 王翀 . 铜互连电镀中有机添加剂的合成与分析[J]. 电化学, 2023 , 29(8) : 2208111 . DOI: 10.13208/j.electrochem.2208111
Copper interconnects are essential to the functionality, performance, power efficiency, reliability, and fabrication yield of electronic devices. They are widely found in chips, packaging substrates and printed circuit boards, and are often produced by copper electroplating in an acidic aqueous solution. Organic additives play a decisive role in regulating copper deposition to fill microgrooves, and micro-vias to form fine lines and interlayer interconnects. Generally, an additive package consists of three components (brightener, suppressor, and leveler), which have a synergistic effect of super-filling on electroplating copper when the concentration ratio is appropriate. Many works of literature have discussed the mechanism of super filling and the electrochemical behavior of representative additive molecules; however, few articles discussed the chemical structure and preparation of the additives. Herein, this paper focuses on the preparation method and the rapid electrochemical screening of each additive component to provide an idea for the future development of copper electroplating additives.
Key words: acid copper electroplating; copper interconnect; suppressor; brightener; leveler
[1] | Wang C, Peng C, Xiang J, Chen Y M, He W, Su X H, Lu Y Y. Research and application of copper electroplating in interconnection of printed circuit board[J]. J. Electrochem., 2021, 27(03): 257-268. |
[2] | Bai R S. The past, present and future of copper electroplating (Part.2)[J]. Print. Circuit. Board. Inf., 2004, 1: 5-12. |
[3] | Bai R S. The past, present and future of copper electroplating (Part.1)[J]. Print. Circuit. Board. Inf., 2003, 6: 7-16. |
[4] | Liu R Z. Electroplating technology[M]: Beijing: Chemical Industry Press, 2008. |
[5] | Zhou S M. Metal electrodeposition: Principles and research methods[M]: Shanghai: Science and Technology Press, 1987. |
[6] | He W. Advanced technology of printed circuit and printed electronics[M], vol. 1. Beijing:Science and Technology Press, 2016. |
[7] | He W. Advanced technology of printed circuit and printed electronics[M], vol. 2. Beijing:Science and Technology Press, 2016. |
[8] | Gallaway J W, Willey M J, West A C. Acceleration kinetics of PEG, PPG, and a triblock copolymer by SPS during copper electroplating[J]. J. Electrochem. Soc., 2009, 156(4): D146-D154. |
[9] | Dow W P, Huang H S, Yen M Y, Huang H C. Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating[J]. J. Electrochem. Soc., 2005, 152(6): C425-C434. |
[10] | Wu Y C, Mao Z J, Wang C, Liu Y W, Chen S L, Cai W B. Advances in mechanistic understanding of additives for copper electroplating in high-end electronics manufacture[J]. Sci. China-Chem., 2021, 51(11): 1474-1488. |
[11] | Huang Q, Baker-O'Neal B C, Parks C, Hopstaken M, Fluegel A, Emnet C, Arnold M, Mayer D. Leveler effect and oscillatory behavior during copper electroplating[J]. J. Electrochem. Soc., 2012, 159(9): D526-D531. |
[12] | Kim S K, Josell D, Moffat T P. Electrodeposition of Cu in the PEI-PEG-Cl-SPS additive system - reduction of overfill bump formation during superfilling[J]. J. Electrochem. Soc., 2006, 153(9): C616-C622. |
[13] | Jiang C, Li M, Wang S, Li Y Y, Yu X X. Elimination the cmp defects for tsv process by optimizing the copper electrodeposition[C]// 18th International Conference on Electronic Packaging Technology (ICEPT). Harbin, China, Aug 16-19, 2017. |
[14] | Zheng L, He W, Zhu K, Wang C, Wang S X, Hong Y, Chen Y M, Zhou G Y, Miao H, Zhou J Q. Investigation of poly (1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole[J]. Electrochim. Acta, 2018, 283: 560-567. |
[15] | Xiang J, Wang S X, Li J, He W, Wang C, Chen Y M, Zhang H W, Miao H, Zhou J Q, Jin X F. Electrochemical factors of levelers on plating uniformity of through-holes: Simulation and experiments[J]. J. Electrochem. Soc., 2018, 165(9): E359-E365. |
[16] | Zheng L, Wang C, Cai D A, Huang Y Z, Adi K, Hong Y, Chen Y M, Zhou G Y, Armini S, De Gendt S, Wang S X, He W. Hydroquinone oriented growth control to achieve high-quality copper coating at high rate for electronics interconnection[J]. J. Taiwan Inst. Chem. Eng., 2020, 112: 130-136. |
[17] | Lai Z Q, Wang S X, Wang C, Hong Y, Chen Y M, Zhang H W, Zhou G Y, He W, Ai K H, Peng Y Q. Computational analysis and experimental evidence of two typical levelers for acid copper electroplating[J]. Electrochim. Acta, 2018, 273: 318-326. |
[18] | Andricacos P C, Uzoh C, Dukovic J O, Horkans J, Deligianni H. Damascene copper electroplating for chip interconnections[J]. IBM J. Res. Dev., 1998, 42(5): 567-574. |
[19] | Zhu K, Wang C, Wang J Z, Hong Y, Chen Y M, He W, Zhou J Q, Miao H, Chen Q G. Convection-dependent competitive adsorption between SPS and EO/PO on copper surface for accelerating trench filling[J]. J. Electrochem. Soc., 2019, 166(4): D93-D98. |
[20] | Liu X Y, Liu H Y, Yu D Q, Wu X L, Chen W L. Development of micropackage technology for through silicon via (TSV) interposer[J]. Electron. Packag., 2015, 15(08): 1-8. |
[21] | Chen Y M, He W, Chen X M, Wang C, Tao Z H, Wang S X, Zhou G Y, Moshrefi-Torbati M. Plating uniformity of bottom-up copper pillars and patterns for IC substrates with additive-assisted electrodeposition[J]. Electrochim. Acta, 2014, 120: 293-301. |
[22] | Ji L X, Wang S X, Wang C, Chen G Q, Chen Y M, He W, Tan Z. Improved uniformity of conformal through-hole copper electrodeposition by revision of plating cell configuration[J]. J. Electrochem. Soc., 2015, 162(12): D575-D583. |
[23] | Ji L X, Wang C, Wang S X, Zhu K, He W, Xiao D J. Multi-physics coupling aid uniformity improvement in pattern plating[J]. Circuit World, 2016, 42(2): 69-76. |
[24] | Ahmed A M M, El Adl A F, Seleim S M. Some organic compounds as accelerator and inhibitor for electroplating process[J]. Asian J. Chem., 2013, 25(12): 6700-6706. |
[25] | Moriyama M, Konishi S, Tsukimoto S, Murakami M. Effect of organic additives on formation and growth behavior of micro-void in electroplating copper films[J]. Mater. Trans., 2004, 45(11): 3172-3176. |
[26] | Ahmed A M M, Abdel-Rahman A A H, El Adl A F. Electroplating of copper in the presence of 5,6-dihydropyrimidine-2-(1h)-thione, 2-methylthiopyrimidine-4-(1h)-one, 2-thiopyrimidine-4-(1h)-ones, and 2,4-pyrimidine(1h,3h)-dione derivatives as organic additives[J]. J. Dispersion Sci. Technol., 2011, 32(3): 453-463. |
[27] | Broekmann P, Fluegel A, Emnet C, Arnold M, Roeger-Goepfert C, Wagner A, Hai N T M, Mayer D. Classification of suppressor additives based on synergistic and antagonistic ensemble effects[J]. Electrochim. Acta, 2011, 56(13): 4724-4734. |
[28] | Willey M J, Emekli U, West A C. Uniformity effects when electrodepositing Cu onto resistive substrates in the presence of organic additives[J]. J. Electrochem. Soc., 2008, 155(4): D302-D307. |
[29] | Moffat T P, Wheeler D, Kim S K, Josell D. Curvature enhanced adsorbate coverage mechanism for bottom-up superfilling and bump control in damascene processing[J]. Electrochim. Acta, 2007, 53(1): 145-154. |
[30] | Dow W P, Liu D H, Lu C W, Chen C H, Yan J J, Huang S M. Through-hole filling by copper electroplating using a single organic additive[J]. Electrochem. Solid State Lett., 2011, 14(1): D13-D15. |
[31] | Basol B M, West A C. Study on mechanically induced current suppression and super filling mechanisms[J]. Electrochem. Solid State Lett., 2006, 9(4): C77-C80. |
[32] | Jin Y, Sui Y F, Wen L, Ye F M, Sun M, Wang Q M. Competitive adsorption of PEG and SPS on copper surface in acidic electrolyte containing Cl[J]. J. Electrochem. Soc., 2013, 160(1): D20-D27. |
[33] | Chrzanowska A, Mroczka R, Florek M. Effect of Interaction between dodecyltrimethylammonium chloride (DTAC) and bis(3-sulphopropyl) disulphide (SPS) on the morphology of electrodeposited copper[J]. Electrochim. Acta, 2013, 106: 49-62. |
[34] | Yoon Y, Kim M J, Kim J J. Machine learning to electrochemistry: Analysis of polymers and halide ions in a copper electrolyte[J]. Electrochim. Acta, 2021, 399: 139424. |
[35] | Schmidt R, Bandas C D, Gewirth A A, Knaup J M. The adsorption structure of polyethylene imine on copper surfaces for electrodeposition[J]. Phys. Status Solidi-Rapid Res. Lett., 2021, 15(11): 2100351. |
[36] | Willey M J, West A C. Microfluidic studies of adsorption and desorption of polyethylene glycol during copper electrodeposition[J]. J. Electrochem. Soc., 2006, 153(10): C728-C734. |
[37] | Moreno-Garcia P, Grimaudo V, Riedo A, Tulej M, Neuland M B, Wurz P, Broekmann P. Towards structural analysis of polymeric contaminants in electrodeposited Cu films[J]. Electrochim. Acta, 2016, 199: 394-402. |
[38] | Ji L X, Su S D, Nie H X, Wang S X, He W, Ai K H, Li Q H. Mechanism analysis of microvia filling based on multiphysics coupling[J]. Circuit World, 2018, 44(2): 60-68. |
[39] | Zhu K, Wang C, Wang S X, Chen Y M, Zhou G Y, Hong Y, He W, Zhou J Q, Miao H, Wen Z S. Communication-localized accelerator pre-adsorption to speed up copper electroplating microvia filling[J]. J. Electrochem. Soc., 2019, 166(10): D467-D469. |
[40] | Zhu D. New development of hot markets in Japan's PCB industry in 2021 (1)[J]. Print. Circuit. Inf., 2022, 30(05): 1-6. |
[41] | Zhu D. New development of hot markets in Japan's PCB industry in 2021 (2)[J]. Print. Circuit. Inf., 2022, 30(06): 1-6. |
[42] | Feng Z V, Li X, Gewirth A A. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: a surface-enhanced raman study[J]. J. Phys. Chem. B, 2003, 107(35): 9415-9423. |
[43] | Yin L, Liu Z H, Yang Z P, Wang Z L, Shingubara S. Effect of PEG molecular weight on bottom-up filling of copper electrodeposition for pcb interconnects[J]. Trans. Inst. Metal Finish., 2010, 88(3): 149-153. |
[44] | Ren S, Lei Z, Wang Z. Investigation of suppressor polyethylene glycol dodecyl ether on electroplated Cu filling by electrochemical method[J]. Trans. Inst. Metal Finish., 2015, 93(4): 190-195. |
[45] | Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm F R, Frey H. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: Synthesis, novel polymer architectures, and bioconjugation[J]. Chem. Rev., 2016, 116(4): 2170-2243. |
[46] | Alain D. Anionic ring-opening polymerization of epoxides and related nucleophilic polymerization processes. In: Penczek S, Grubbs R (Eds). Ring-Opening Polymerization and Special Polymerization Processes, 1 Edn[M], vol. 4. London: Elsevier Science, 2016. 117-140 |
[47] | Billouard C, Carlotti S, Desbois P, Deffieux A. "Controlled" high-speed anionic polymerization of propylene oxide initiated by alkali metal alkoxide/trialkylaluminum systems[J]. Macromolecules, 2004, 37(11): 4038-4043. |
[48] | Sakakibara K, Nakano K, Nozaki K. Regio-controlled ring-opening polymerization of perfluoroalkyl-substituted epoxides[J]. Chem. Commun., 2006, (31): 3334-3336. |
[49] | Michael C, Austin T. Polyol purification process: American, US4535189[P]. 1985-8-13 |
[50] | Sun J J. Quantitative analysis of additive concentration in plating solutions based on cyclic voltammetric dissolution. In: Sun S G (Eds). Fundamentals and Methodologies of Electrochemical Measurement[M]: Xiamen: Xiamen University, 2021. 102-106 |
[51] | Tao Z H, Liu G T, Li Y X, Su H. Electrochemical and analytical study of electroplating additive in copper plating solution for microvia filling[J]. Circuit World, 2019, 45(3): 124-131. |
[52] | Chen T C, Tsai Y L, Hsu C F, Dow W P, Hashimoto Y. Effects of brighteners in a copper plating bath on throwing power and thermal reliability of plated through holes[J]. Electrochim. Acta, 2016, 212: 572-582. |
[53] | Luo J Y, Li Z, Shi M H, Chen J J, Hao Z F, Hez J. Effects of accelerator alkyl chain length on the microvia filling performance in copper superconformal electroplating[J]. J. Electrochem. Soc., 2019, 166(4): D104-D112. |
[54] | Schmitt K G, Schmidt R, Gaida J, Gewirth A A. Chain length variation to probe the mechanism of accelerator additives in copper electrodeposition[J]. Phys. Chem. Chem. Phys., 2019, 21(30): 16838-16847. |
[55] | Li Z, Tan B Z, Shi M H, Luo J Y, Hao Z F, He J, Yang G N, Cui C Q. Bis-(sodium sulfoethyl)-disulfide: A promising accelerator for super-conformal copper electrodeposition with wide operating concentration ranges[J]. J. Electrochem. Soc., 2020, 167(4). |
[56] | Zhao S H, Pang K N, Huang Y N, Xiao N. Special electrochemical behaviour of sodium thiazolinyl-dithiopropane sulphonate during microvia filling[J]. Trans. Inst. Metal Finish., 2019, 97(4): 217-224. |
[57] | Yang Y, Zhang M, Liu H Y, Gan J Q, Qu J H. Synthesis of the anionic surfactant sodium polydithiodipropane sulfonate[J]. Guangzhou Chem., 2013, 38(1): 7-13. |
[58] | Lu J L, Jiang H L, Hang K, Hang D L. Synthesizing high-purity sodium polydisulfide dipropane sulfonate: China, CN 112142631B[P]. 2020-12-29 |
[59] | Song C Y, Yang L, Zhou L P, Zhang Z L, Wang H P, Liu S J, Wang J, Zhang X L. Novel synthesizing of sodium polydisulfide dipropane sulfonate: China, CN 101519369B[P]. 2012-12-16 |
[60] | Bandas C D, Rooney R T, Kirbs A, Jager C, Schmidt R, Gewirth A A. Interfacial leveler-accelerator interactions in Cu electrodeposition[J]. J. Electrochem. Soc., 2021, 168(4): 042501. |
[61] | Wang Z Y, Jin L, Yang J Q, Li W Q, Zhan D P, Yang F Z, Sun S G. Studies and progresses on hole metallization in high-density interconnected printed circuit boards[J]. J. Electrochem., 2021, (03): 316-331. |
[62] | Lv J G, Zhao X H, Jie X, Li J, Wei X C, Chen B, Hong G, Wu W J, Wang L M. Fatty acid quaternary ammonium surfactants based on renewable resources as a leveler for copper electroplating[J]. ChemElectroChem, 2019, 6(13): 3254-3263. |
[63] | Lei Z W, Chen L, Wang W L, Wang Z L, Zhao C. Tetrazole derived levelers for filling electroplated Cu microvias: Electrochemical behaviors and quantum calculations[J]. Electrochim. Acta, 2015, 178: 546-554. |
[64] | Chang C, Lu X B, Lei Z W, Wang Z L, Zhao C. 2-Mercaptopyridine as a new leveler for bottom-up filling of micro-vias in copper electroplating[J]. Electrochim. Acta, 2016, 208: 33-38. |
[65] | Wang X, Zhang S T, Chen S J, Tan B C, Guo H L, Wang Y, Qiang Y J, Fu S L, Wen Y N. Effects of 2,2-dithiodipyridine as a leveler for through-holes filling by copper electroplating[J]. J. Electrochem. Soc., 2019, 166(13): D660-D668. |
[66] | Lv J G, Xu J, Zhao X H, Han J W, Chen B, Wang X M, He Y L, Li J, Wang L M. Interface adhesion enhancement by condensed aromatic ring expansion of naphthalene imide derivatives for microvia metallization by copper electroplating[J]. Thin Solid Films, 2021, 727: 138671. |
[67] | Ren S J, Lei Z W, Wang Z L. Investigation of nitrogen heterocyclic compounds as levelers for electroplating Cu filling by electrochemical method and quantum chemical calculation[J]. J. Electrochem. Soc., 2015, 162(10): D509-D514. |
[68] | Bozzini B, Mele C, D'Urzo L, Romanello V. An Electrochemical and in situ sers study of cu electrodeposition from acidic sulphate solutions in the presence of 3-diethylamino-7-(4-dimethylaminophenylazo)-5-phenylphenazinium chloride (Janus Green B)[J]. J. Appl. Electrochem., 2006, 36(9): 973-981. |
[69] | He N, Sun H C, Dong X M, Xu H X. Design synthesis and polymerization kinetics of multi-armed star-shaped polyethyleneimine[J]. Polym. Mater. Sci. Eng., 2014, 30(7): 35-39. |
[70] | Zhang W X, Liu W X, Huang A P, Gao L, Li Z, Duan C L, Zhu B C. Applications, preparation methods and production status of polyethyleneimine[J]. Contemp. Chem. Ind., 2018, 47(02): 392-395. |
[71] | Paul A R, Louis R, Pierre C M. Synthesis of linear polyethyleneimine by living anionic polymerization: American, US10011683[P]. 2018-7-3. |
[72] | Guo K, Wang H X, Li Z J, Luo Z K, Liu Y Y, Wang X, Liu B, Zhou F Y. A method for synthesis of linear polyethyleneimine block copolymer: China, CN 108586738B[P]. 2020-10-27. |
[73] | Yu W F, Wang X, Li B G. A preparation method and application of polyquaternium salts: China: CN 102453257B[P]. 2014-3-26. |
[74] | Chen B A, Wang A Y, Wu S Y, Wang L M. Polyquaternium-2: A new levelling agent for copper electroplating from acidic sulphate bath[J]. Electrochemistry, 2016, 84(6): 414-419. |
[75] | Hatch J J, Willey M J, Gewirth A A. Influence of aromatic functionality on quaternary ammonium levelers for Cu plating[J]. J. Electrochem. Soc., 2011, 158(6): D323-D329. |
[76] | Wang Y, Sun L, Wang P, et al. Synthesis and characterized of new quaternary ammonium polymers and its function test[J]. Contemp. Chem. Ind., 2008, (2): 149-152. |
[77] | Hai N T M, Kraemer K W, Fluegel A, Arnold M, Mayer D, Broekmann P. Beyond interfacial anion/cation pairing: The role of Cu(I) coordination chemistry in additive-controlled copper plating[J]. Electrochim. Acta, 2012, 83: 367-375. |
[78] | Hai N T M, Furrer J, Barletta E, Luedi N, Broekmann P. Copolymers of imidazole and 1,4-butandiol diglycidyl ether as an efficient suppressor additive for copper electroplating[J]. J. Electrochem. Soc., 2014, 161(9): D381-D387. |
[79] | Li J, Zhou G Y, Hong Y, Wang C, He W, Wang S X, Chen Y M, Wen Z S, Wang Q Y. Copolymer of pyrrole and 1,4-butanediol diglycidyl as an efficient additive leveler for through-hole copper electroplating[J]. ACS Omega, 2020, 5(10): 4868-4874. |
/
〈 |
|
〉 |